| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859 |
- #include "common.h"
- #include "llama.h"
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <sstream>
- #include <thread>
- #include <mutex>
- #include <atomic>
- #include <vector>
- #include <array>
- #include <fstream>
- #include <sstream>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- struct results_perplexity {
- std::vector<llama_token> tokens;
- double ppl_value;
- std::vector<float> logits;
- std::vector<float> probs;
- };
- struct results_log_softmax {
- double log_softmax;
- float logit;
- float prob;
- };
- static void write_logfile(
- const llama_context * ctx, const gpt_params & params, const llama_model * model,
- const struct results_perplexity & results
- ) {
- if (params.logdir.empty()) {
- return;
- }
- if (params.hellaswag) {
- fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
- return;
- }
- const std::string timestamp = get_sortable_timestamp();
- const bool success = create_directory_with_parents(params.logdir);
- if (!success) {
- fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
- __func__, params.logdir.c_str());
- return;
- }
- const std::string logfile_path = params.logdir + timestamp + ".yml";
- FILE * logfile = fopen(logfile_path.c_str(), "w");
- if (logfile == NULL) {
- fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
- return;
- }
- fprintf(logfile, "binary: main\n");
- char model_desc[128];
- llama_model_desc(model, model_desc, sizeof(model_desc));
- dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
- fprintf(logfile, "\n");
- fprintf(logfile, "######################\n");
- fprintf(logfile, "# Perplexity Results #\n");
- fprintf(logfile, "######################\n");
- fprintf(logfile, "\n");
- dump_vector_float_yaml(logfile, "logits", results.logits);
- fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
- dump_vector_float_yaml(logfile, "probs", results.probs);
- llama_dump_timing_info_yaml(logfile, ctx);
- fclose(logfile);
- }
- static std::vector<float> softmax(const std::vector<float>& logits) {
- std::vector<float> probs(logits.size());
- float max_logit = logits[0];
- for (float v : logits) {
- max_logit = std::max(max_logit, v);
- }
- double sum_exp = 0.0;
- for (size_t i = 0; i < logits.size(); i++) {
- // Subtract the maximum logit value from the current logit value for numerical stability
- const float logit = logits[i] - max_logit;
- const float exp_logit = expf(logit);
- sum_exp += exp_logit;
- probs[i] = exp_logit;
- }
- for (size_t i = 0; i < probs.size(); i++) {
- probs[i] /= sum_exp;
- }
- return probs;
- }
- static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
- float max_logit = logits[0];
- for (int i = 1; i < n_vocab; ++i) {
- max_logit = std::max(max_logit, logits[i]);
- }
- double sum_exp = 0.0;
- for (int i = 0; i < n_vocab; ++i) {
- sum_exp += expf(logits[i] - max_logit);
- }
- return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
- }
- static inline int nearest_int(float fval) {
- //assert(fval <= 4194303.f);
- float val = fval + 12582912.f;
- int i; memcpy(&i, &val, sizeof(int));
- return (i & 0x007fffff) - 0x00400000;
- }
- static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
- float max_logit = logits[0];
- float min_logit = logits[0];
- for (int i = 1; i < n_vocab; ++i) {
- max_logit = std::max(max_logit, logits[i]);
- min_logit = std::min(min_logit, logits[i]);
- }
- min_logit = std::max(min_logit, max_logit - 16);
- double sum_exp = 0.0;
- for (int i = 0; i < n_vocab; ++i) {
- sum_exp += expf(logits[i] - max_logit);
- }
- const float log_sum_exp = log(sum_exp);
- const float min_log_prob = min_logit - max_logit - log_sum_exp;
- const float scale = (max_logit - min_logit)/65535.f;
- float * d = (float *)log_prob;
- d[0] = scale;
- d[1] = min_log_prob;
- log_prob += 4;
- if (scale) {
- const float inv_scale = 1/scale;
- for (int i = 0; i < n_vocab; ++i) {
- log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
- }
- } else {
- std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
- }
- return max_logit + log_sum_exp - logits[tok];
- }
- static void process_logits(
- int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
- double & nll, double & nll2, float * logit_history, float * prob_history
- ) {
- std::mutex mutex;
- int counter = 0;
- auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
- double local_nll = 0;
- double local_nll2 = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int i = counter++;
- if (i >= n_token) {
- nll += local_nll; nll2 += local_nll2;
- break;
- }
- lock.unlock();
- const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
- const double v = -results.log_softmax;
- local_nll += v;
- local_nll2 += v*v;
- logit_history[i] = results.logit;
- prob_history[i] = results.prob;
- }
- };
- for (auto & w : workers) {
- w = std::thread(compute);
- }
- compute();
- for (auto & w : workers) {
- w.join();
- }
- }
- static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
- std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
- std::mutex mutex;
- const int nv = 2*((n_vocab + 1)/2) + 4;
- int counter = 0;
- auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
- double local_nll = 0;
- double local_nll2 = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int i = counter++;
- if (i >= n_token) {
- nll += local_nll; nll2 += local_nll2;
- break;
- }
- lock.unlock();
- const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
- local_nll += v;
- local_nll2 += v*v;
- }
- };
- for (auto & w : workers) {
- w = std::thread(compute);
- }
- compute();
- for (auto & w : workers) {
- w.join();
- }
- out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
- }
- struct kl_divergence_result {
- double sum_nll = 0;
- double sum_nll2 = 0;
- double sum_kld = 0;
- double sum_kld2 = 0;
- double sum_nll_diff = 0;
- double sum_nll_diff2 = 0;
- size_t n_same_top = 0;
- size_t count = 0;
- };
- static double log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
- float max_logit = logits[0];
- int imax = 0;
- for (int i = 1; i < n_vocab; ++i) {
- if (logits[i] > max_logit) {
- max_logit = logits[i];
- imax = i;
- }
- }
- double sum_exp = 0.0;
- for (int i = 0; i < n_vocab; ++i) {
- sum_exp += expf(logits[i] - max_logit);
- }
- const float log_sum_exp = log(sum_exp);
- const float * d = (const float *)base_log_prob;
- const float scale = d[0];
- const float min_log_prob = d[1];
- base_log_prob += 4;
- float nll = max_logit + log_sum_exp - logits[tok];
- kld.sum_nll += nll;
- kld.sum_nll2 += nll*nll;
- nll += (scale*base_log_prob[tok] + min_log_prob);
- kld.sum_nll_diff += nll;
- kld.sum_nll_diff2 += nll*nll;
- max_logit += log_sum_exp;
- double sum = 0;
- int imax_base = -1;
- float p_log_base_max = 0;
- for (int i = 0; i < n_vocab; ++i) {
- const float p_log_base = scale*base_log_prob[i] + min_log_prob;
- if (i == 0 || p_log_base > p_log_base_max) {
- p_log_base_max = p_log_base;
- imax_base = i;
- }
- if (p_log_base > -16.f) {
- const float p_base = expf(p_log_base);
- sum += p_base * (p_log_base - logits[i] + max_logit);
- }
- }
- kld.sum_kld += sum;
- kld.sum_kld2 += sum*sum;
- ++kld.count;
- if (imax == imax_base) ++kld.n_same_top;
- return sum;
- }
- static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
- std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
- float * kld_values) {
- std::mutex mutex;
- const int nv = 2*((n_vocab + 1)/2) + 4;
- int counter = 0;
- auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values] () {
- kl_divergence_result local_kld;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int i = counter++;
- if (i >= n_token) {
- kld.sum_nll += local_kld.sum_nll;
- kld.sum_nll2 += local_kld.sum_nll2;
- kld.sum_kld += local_kld.sum_kld;
- kld.sum_kld2 += local_kld.sum_kld2;
- kld.sum_nll_diff += local_kld.sum_nll_diff;
- kld.sum_nll_diff2 += local_kld.sum_nll_diff2;
- kld.n_same_top += local_kld.n_same_top;
- kld.count += local_kld.count;
- break;
- }
- lock.unlock();
- double v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
- kld_values[i] = (float)v;
- }
- };
- for (auto & w : workers) {
- w = std::thread(compute);
- }
- compute();
- for (auto & w : workers) {
- w.join();
- }
- }
- static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
- // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
- // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
- // Output: `perplexity: 13.5106 [114/114]`
- // BOS tokens will be added for each chunk before eval
- const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
- fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
- std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
- const int n_ctx = llama_n_ctx(ctx);
- if (int(tokens.size()) < 2*n_ctx) {
- fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
- n_ctx);
- fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
- return {std::move(tokens), 0., {}, {}};
- }
- std::vector<float> logit_history;
- std::vector<float> prob_history;
- logit_history.resize(tokens.size());
- prob_history.resize(tokens.size());
- if (params.ppl_stride <= 0) {
- fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
- return {tokens, -1, logit_history, prob_history};
- }
- const int calc_chunk = n_ctx;
- fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
- if (int(tokens.size()) <= calc_chunk) {
- fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
- tokens.size(), n_ctx, params.ppl_stride);
- return {tokens, -1, logit_history, prob_history};
- }
- const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
- const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
- const int n_batch = params.n_batch;
- int count = 0;
- double nll = 0.0;
- fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * params.ppl_stride;
- const int end = start + calc_chunk;
- const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
- //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
- std::vector<float> logits;
- const auto t_start = std::chrono::high_resolution_clock::now();
- // clear the KV cache
- llama_kv_cache_clear(ctx);
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
- if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
- //fprintf(stderr, "%s : failed to eval\n", __func__);
- return {tokens, -1, logit_history, prob_history};
- }
- // save original token and restore it after eval
- const auto token_org = tokens[batch_start];
- // add BOS token for the first batch of each chunk
- if (add_bos && j == 0) {
- tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
- }
- const auto batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
- if (j == 0) {
- tokens[batch_start] = token_org;
- }
- }
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- fprintf(stderr, "%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
- }
- //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
- for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
- // Calculate probability of next token, given the previous ones.
- const std::vector<float> tok_logits(
- logits.begin() + (j + 0) * n_vocab,
- logits.begin() + (j + 1) * n_vocab);
- const float prob = softmax(tok_logits)[tokens[start + j + 1]];
- logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
- prob_history[start + j + 1] = prob;
- nll += -std::log(prob);
- ++count;
- }
- // perplexity is e^(average negative log-likelihood)
- if (params.ppl_output_type == 0) {
- printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
- } else {
- printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
- }
- fflush(stdout);
- }
- printf("\n");
- return {tokens, std::exp(nll / count), logit_history, prob_history};
- }
- static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
- if (params.ppl_stride > 0) {
- return perplexity_v2(ctx, params);
- }
- // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
- // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
- // Output: `perplexity: 13.5106 [114/114]`
- // BOS tokens will be added for each chunk before eval
- const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
- const int n_ctx = llama_n_ctx(ctx);
- std::ofstream logits_stream;
- if (!params.logits_file.empty()) {
- logits_stream.open(params.logits_file.c_str(), std::ios::binary);
- if (!logits_stream.is_open()) {
- fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
- return {};
- }
- fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
- logits_stream.write("_logits_", 8);
- logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
- }
- auto tim1 = std::chrono::high_resolution_clock::now();
- fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
- std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
- auto tim2 = std::chrono::high_resolution_clock::now();
- fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
- if (int(tokens.size()) < 2*n_ctx) {
- fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
- n_ctx);
- fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
- return {std::move(tokens), 0., {}, {}};
- }
- std::vector<float> logit_history;
- logit_history.resize(tokens.size());
- std::vector<float> prob_history;
- prob_history.resize(tokens.size());
- const int n_chunk_max = tokens.size() / n_ctx;
- const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
- const int n_batch = params.n_batch;
- int count = 0;
- double nll = 0.0;
- double nll2 = 0.0;
- const int num_batches = (n_ctx + n_batch - 1) / n_batch;
- std::vector<float> logits;
- if (num_batches > 1) {
- logits.reserve((size_t)n_ctx * n_vocab);
- }
- fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
- std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
- std::vector<uint16_t> log_probs;
- if (!params.logits_file.empty()) {
- logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
- logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
- logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
- const int nv = 2*((n_vocab + 1)/2) + 4;
- log_probs.resize(n_ctx * nv);
- }
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * n_ctx;
- const int end = start + n_ctx;
- const auto t_start = std::chrono::high_resolution_clock::now();
- // clear the KV cache
- llama_kv_cache_clear(ctx);
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- // save original token and restore it after eval
- const auto token_org = tokens[batch_start];
- // add BOS token for the first batch of each chunk
- if (add_bos && j == 0) {
- tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
- }
- if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return {tokens, -1, logit_history, prob_history};
- }
- // restore the original token in case it was set to BOS
- tokens[batch_start] = token_org;
- if (num_batches > 1) {
- const auto * batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
- }
- }
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- fprintf(stderr, "%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
- }
- // We get the logits for all the tokens in the context window (params.n_ctx)
- // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
- // calculate the perplexity over the last half of the window (so the model always has
- // some context to predict the token).
- //
- // We rely on the fact that attention in the forward pass only looks at previous
- // tokens here, so the logits returned for each token are an accurate representation
- // of what the model would have predicted at that point.
- //
- // Example, we have a context window of 512, we will compute perplexity for each of the
- // last 256 tokens. Then, we split the input up into context window size chunks to
- // process the entire prompt.
- const int first = n_ctx/2;
- const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
- if (!params.logits_file.empty()) {
- process_logits(logits_stream, n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
- workers, log_probs, nll, nll2);
- } else {
- process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
- workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
- }
- count += n_ctx - first - 1;
- // perplexity is e^(average negative log-likelihood)
- if (params.ppl_output_type == 0) {
- printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
- } else {
- double av = nll/count;
- double av2 = nll2/count - av*av;
- if (av2 > 0) av2 = sqrt(av2/(count-1));
- printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
- }
- fflush(stdout);
- logits.clear();
- }
- printf("\n");
- nll2 /= count;
- nll /= count;
- const double ppl = exp(nll);
- nll2 -= nll * nll;
- if (nll2 > 0) {
- nll2 = sqrt(nll2/(count-1));
- printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
- } else {
- printf("Unexpected negative standard deviation of log(prob)\n");
- }
- return {tokens, ppl, logit_history, prob_history};
- }
- static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
- const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
- const int ret = llama_decode(ctx, batch_view);
- if (ret != 0) {
- LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
- return false;
- }
- memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float));
- }
- return true;
- }
- #define K_TOKEN_CHUNK 4
- static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
- const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
- if (eval_results.size() != eval_pairs.size()) {
- eval_results.resize(eval_pairs.size());
- }
- if (eval_pairs.empty()) return;
- size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
- std::atomic<int> counter(0);
- auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
- float local_logprobs[K_TOKEN_CHUNK];
- while (true) {
- size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
- if (first >= eval_results.size()) break;
- size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
- for (size_t i = first; i < last; ++i) {
- auto logits = batch_logits + eval_pairs[i].first * n_vocab;
- float max_logit = logits[0];
- for (int j = 1; j < n_vocab; ++j) {
- max_logit = std::max(max_logit, logits[j]);
- }
- float sum_p = 0.f;
- for (int j = 0; j < n_vocab; ++j) {
- sum_p += expf(logits[j] - max_logit);
- }
- local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
- }
- std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
- }
- };
- for (size_t it = 0; it < max_threads; ++it) {
- workers[it] = std::thread(compute);
- }
- for (size_t it = 0; it < max_threads; ++it) {
- workers[it].join();
- }
- }
- static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
- // Calculates hellaswag score (acc_norm) from prompt
- //
- // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
- // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
- //
- // All 10042 tasks should be extracted to keep the results standardized like other implementations.
- //
- // Datafile layout:
- // ['??'] denotes json fields
- // 6 lines per task:
- // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
- // ['label'] - The index the best common sense ending aka gold ending
- // ['endings'][0] - Endings added to the first part of the query
- // ['endings'][1]
- // ['endings'][2]
- // ['endings'][3]
- std::vector<std::string> prompt_lines;
- std::istringstream strstream(params.prompt);
- std::string line;
- while (std::getline(strstream,line,'\n')) {
- prompt_lines.push_back(line);
- }
- if (prompt_lines.size() % 6 != 0) {
- fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
- return;
- }
- size_t hs_task_count = prompt_lines.size()/6;
- fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
- const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
- fprintf(stderr, "================================= is_spm = %d\n", is_spm);
- // This is needed as usual for LLaMA models
- const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
- // The tasks should be randomized so the score stabilizes quickly.
- bool randomize_tasks = true;
- // Number of tasks to use when computing the score
- if (params.hellaswag_tasks < hs_task_count) {
- hs_task_count = params.hellaswag_tasks;
- }
- // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
- std::mt19937 rng(1);
- // Dataholder for hellaswag tasks
- struct hs_data_t {
- std::string context;
- size_t gold_ending_idx;
- std::string ending[4];
- size_t ending_logprob_count[4];
- double ending_logprob[4];
- size_t i_batch; // starting index in the llama_batch
- size_t common_prefix; // max number of initial tokens that are the same in all sentences
- size_t required_tokens; // needed number of tokens to evaluate all 4 endings
- std::vector<llama_token> seq_tokens[4];
- };
- fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
- // Select and read data from prompt lines
- std::vector<hs_data_t> hs_data(hs_task_count);
- for (size_t i = 0; i < hs_task_count; i++) {
- size_t idx = i;
- auto & hs_cur = hs_data[i];
- // Select a random example of those left in the prompt
- if (randomize_tasks) {
- std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
- idx = dist(rng);
- }
- hs_cur.context = prompt_lines[idx*6];
- hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
- for (size_t j = 0; j < 4; j++) {
- hs_cur.ending[j] = prompt_lines[idx*6+2+j];
- hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], add_bos);
- }
- // determine the common prefix of the endings
- hs_cur.common_prefix = 0;
- for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
- if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
- hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
- hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
- break;
- }
- hs_cur.common_prefix++;
- }
- hs_cur.required_tokens = hs_cur.common_prefix +
- hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
- hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
- hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
- hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
- //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, add_bos).size());
- // Delete the selected random example from the prompt
- if (randomize_tasks) {
- prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
- }
- }
- fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
- printf("\ntask\tacc_norm\n");
- double acc = 0.0f;
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
- const int n_ctx = llama_n_ctx(ctx);
- const int n_batch = params.n_batch;
- const int max_tasks_per_batch = 32;
- const int max_seq = 4*max_tasks_per_batch;
- llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
- std::vector<float> tok_logits(n_vocab);
- std::vector<float> batch_logits(n_vocab*n_ctx);
- std::vector<std::pair<size_t, llama_token>> eval_pairs;
- std::vector<float> eval_results;
- std::vector<std::thread> workers(std::thread::hardware_concurrency());
- for (size_t i0 = 0; i0 < hs_task_count; i0++) {
- int n_cur = 0;
- size_t i1 = i0;
- size_t i_batch = 0; // this tells us where in `llama_batch` we are currently
- llama_batch_clear(batch);
- // batch as much tasks as possible into the available context
- // each task has 4 unique seuqnce ids - one for each ending
- // the common prefix is shared among the 4 sequences to save tokens
- // we extract logits only from the last common token and from all ending tokens of each sequence
- while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
- auto & hs_cur = hs_data[i1];
- const int s0 = 4*(i1 - i0);
- if (s0 + 4 > max_seq) {
- break;
- }
- for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
- llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
- }
- batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
- for (int s = 0; s < 4; ++s) {
- for (size_t i = hs_cur.common_prefix; i < hs_cur.seq_tokens[s].size(); ++i) {
- llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, true);
- }
- }
- hs_cur.i_batch = i_batch;
- i_batch += hs_cur.required_tokens;
- n_cur += hs_data[i1].required_tokens;
- if (++i1 == hs_task_count) {
- break;
- }
- }
- if (i0 == i1) {
- fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
- return;
- }
- llama_kv_cache_clear(ctx);
- // decode all tasks [i0, i1)
- if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
- fprintf(stderr, "%s: llama_decode() failed\n", __func__);
- return;
- }
- // Compute log-probs in parallel
- // First we collect all tasks
- eval_pairs.clear();
- for (size_t i = i0; i < i1; ++i) {
- auto & hs_cur = hs_data[i];
- size_t li = hs_cur.common_prefix;
- for (int s = 0; s < 4; ++s) {
- for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
- eval_pairs.emplace_back(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]);
- }
- ++li;
- }
- }
- // Then we do the actual calculation
- compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
- size_t ir = 0;
- // compute the logprobs for each ending of the decoded tasks
- for (size_t i = i0; i < i1; ++i) {
- auto & hs_cur = hs_data[i];
- std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(hs_cur.i_batch + hs_cur.common_prefix - 1), n_vocab*sizeof(float));
- const auto first_probs = softmax(tok_logits);
- for (int s = 0; s < 4; ++s) {
- hs_cur.ending_logprob_count[s] = 1;
- hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
- for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
- hs_cur.ending_logprob[s] += eval_results[ir++];
- hs_cur.ending_logprob_count[s]++;
- }
- hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
- }
- // Find the ending with maximum logprob
- size_t ending_logprob_max_idx = 0;
- double ending_logprob_max_val = hs_cur.ending_logprob[0];
- for (size_t s = 1; s < 4; s++) {
- if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
- ending_logprob_max_idx = s;
- ending_logprob_max_val = hs_cur.ending_logprob[s];
- }
- }
- //printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
- // If the gold ending got the maximum logprobe add one accuracy point
- if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
- acc += 1.0;
- }
- // Print the accumulated accuracy mean x 100
- printf("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
- fflush(stdout);
- }
- i0 = i1 - 1;
- }
- llama_batch_free(batch);
- printf("\n");
- }
- struct winogrande_entry {
- std::string first;
- std::string second;
- std::array<std::string, 2> choices;
- int answer;
- size_t i_batch;
- size_t common_prefix;
- size_t required_tokens;
- size_t n_base1; // number of tokens for context + choice 1
- size_t n_base2; // number of tokens for context + choice 2
- std::vector<llama_token> seq_tokens[2];
- };
- static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) {
- std::vector<winogrande_entry> result;
- std::istringstream in(prompt);
- std::string line;
- std::array<int, 4> comma_pos;
- while (true) {
- std::getline(in, line);
- if (in.fail() || in.eof()) break;
- int ipos = 0;
- bool quote_open = false;
- for (int i = 0; i < int(line.size()); ++i) {
- if (!quote_open) {
- if (line[i] == ',') {
- comma_pos[ipos++] = i;
- if (ipos == 4) break;
- }
- else if (line[i] == '"') {
- quote_open = true;
- }
- }
- else {
- if (line[i] == '"') {
- quote_open = false;
- }
- }
- }
- if (ipos != 4) {
- printf("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
- continue;
- }
- auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
- : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
- auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
- auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
- auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
- auto index = line.substr(0, comma_pos[0]);
- int where = 0;
- for ( ; where < int(sentence.size()); ++where) {
- if (sentence[where] == '_') break;
- }
- if (where == int(sentence.size())) {
- printf("%s: no _ in <%s>\n", __func__, sentence.c_str());
- continue;
- }
- std::istringstream stream(answer.c_str());
- int i_answer; stream >> i_answer;
- if (stream.fail() || i_answer < 1 || i_answer > 2) {
- printf("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
- continue;
- }
- result.emplace_back();
- auto& wg = result.back();
- wg.first = sentence.substr(0, where);
- wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
- wg.choices[0] = std::move(choice1);
- wg.choices[1] = std::move(choice2);
- wg.answer = i_answer;
- }
- return result;
- }
- /*
- * Evaluates the Winogrande score.
- * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
- * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
- * As an example, the 1st row in the above dataset is
- *
- * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
- *
- */
- static void winogrande_score(llama_context * ctx, const gpt_params & params) {
- constexpr int k_min_trailing_ctx = 3;
- auto data = load_winogrande_from_csv(params.prompt);
- if (data.empty()) {
- fprintf(stderr, "%s: no tasks\n", __func__);
- return;
- }
- fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, data.size());
- if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
- fprintf(stderr, "%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
- std::mt19937 rng(1);
- std::vector<int> aux(data.size());
- for (int i = 0; i < int(data.size()); ++i) {
- aux[i] = i;
- }
- float scale = 1/(1.f + (float)rng.max());
- std::vector<winogrande_entry> selected;
- selected.resize(params.winogrande_tasks);
- for (int i = 0; i < int(params.winogrande_tasks); ++i) {
- int j = int(scale*rng()*aux.size());
- selected[i] = std::move(data[aux[j]]);
- aux[j] = aux.back();
- aux.pop_back();
- }
- data = std::move(selected);
- }
- fprintf(stderr, "%s : tokenizing selected tasks\n", __func__);
- // This is needed as usual for LLaMA models
- const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
- for (auto & task : data) {
- task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, add_bos);
- task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, add_bos);
- task.common_prefix = 0;
- for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
- if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
- break;
- }
- task.common_prefix++;
- }
- task.required_tokens = task.common_prefix +
- task.seq_tokens[0].size() - task.common_prefix +
- task.seq_tokens[1].size() - task.common_prefix;
- task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos).size();
- task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos).size();
- }
- fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__);
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
- const int n_ctx = llama_n_ctx(ctx);
- const int n_batch = params.n_batch;
- const int max_tasks_per_batch = 128;
- const int max_seq = 2*max_tasks_per_batch;
- llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
- std::vector<float> tok_logits(n_vocab);
- std::vector<float> batch_logits(n_vocab*n_ctx);
- std::vector<std::pair<size_t, llama_token>> eval_pairs;
- std::vector<float> eval_results;
- std::vector<std::thread> workers(std::thread::hardware_concurrency());
- int n_correct = 0;
- int n_done = 0;
- for (size_t i0 = 0; i0 < data.size(); i0++) {
- int n_cur = 0;
- size_t i1 = i0;
- size_t i_batch = 0;
- llama_batch_clear(batch);
- while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
- const int s0 = 2*(i1 - i0);
- if (s0 + 2 > max_seq) {
- break;
- }
- for (size_t i = 0; i < data[i1].common_prefix; ++i) {
- llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1}, false);
- }
- batch.logits[batch.n_tokens - 1] = true;
- for (int s = 0; s < 2; ++s) {
- for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
- llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
- }
- }
- data[i1].i_batch = i_batch;
- i_batch += data[i1].required_tokens;
- n_cur += data[i1].required_tokens;
- if (++i1 == data.size()) {
- break;
- }
- }
- if (i0 == i1) {
- fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
- return;
- }
- llama_kv_cache_clear(ctx);
- // decode all tasks [i0, i1)
- if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
- fprintf(stderr, "%s: llama_decode() failed\n", __func__);
- return;
- }
- eval_pairs.clear();
- for (size_t i = i0; i < i1; ++i) {
- auto & task = data[i];
- const bool skip_choice =
- task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
- task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
- const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
- const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
- size_t li = n_base1 - 1;
- for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
- eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[0][j+1]);
- }
- const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
- const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
- li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1;
- for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
- eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[1][j+1]);
- }
- }
- compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
- size_t ir = 0;
- for (size_t i = i0; i < i1; ++i) {
- auto & task = data[i];
- const bool skip_choice =
- task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
- task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
- float score_1st = 0;
- const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
- const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
- for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
- score_1st += eval_results[ir++];
- }
- score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
- float score_2nd = 0;
- const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
- const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
- for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
- score_2nd += eval_results[ir++];
- }
- score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
- int result = score_1st > score_2nd ? 1 : 2;
- if (result == task.answer) {
- ++n_correct;
- }
- ++n_done;
- // print the accumulated accuracy mean x 100
- printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
- fflush(stdout);
- }
- i0 = i1 - 1;
- }
- printf("\n");
- if (n_done < 100) return;
- const float p = 1.f*n_correct/n_done;
- const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
- printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
- }
- static bool deserialize_string(std::istream & in, std::string & str) {
- uint32_t size;
- if (!in.read((char *)&size, sizeof(size)).fail()) {
- str.resize(size);
- if (!in.read((char *)&str[0], size).fail()) return true;
- }
- return false;
- }
- struct multiple_choice_answers {
- std::vector<std::string> answers;
- std::vector<int> labels;
- bool deserialize(std::istream& in) {
- uint32_t n;
- in.read((char *)&n, sizeof(n));
- if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
- answers.resize(n);
- labels.resize(n);
- for (auto& a : answers) {
- if (!deserialize_string(in, a)) return false;
- }
- in.read((char *)labels.data(), n*sizeof(int));
- return !in.fail();
- }
- };
- struct multiple_choice_task {
- std::string question; // the question (or context that needs to be continued)
- multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer
- multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet
- bool deserialize(std::istream& in) {
- if (!deserialize_string(in, question)) return false;
- return mc1.deserialize(in) && mc2.deserialize(in);
- }
- // For evaluation
- size_t i_batch; // starting index in the llama_batch
- size_t common_prefix; // max number of initial tokens that are the same in all sentences
- size_t required_tokens; // needed number of tokens to evaluate all answers
- std::vector<std::vector<llama_token>> seq_tokens;
- std::vector<float> log_probs;
- };
- static bool multiple_choice_prepare_one_task(llama_context * ctx, bool add_bos, multiple_choice_task& task, bool log_error) {
- if (task.question.empty() || task.mc1.answers.empty()) {
- if (log_error) {
- printf("%s: found bad task with empty question and/or answers\n", __func__);
- }
- return false;
- }
- task.seq_tokens.reserve(task.mc1.answers.size());
- for (auto& answer : task.mc1.answers) {
- if (answer.empty()) {
- if (log_error) {
- printf("%s: found empty answer\n", __func__);
- }
- return false;
- }
- task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, add_bos));
- }
- auto min_len = task.seq_tokens.front().size();
- for (auto& seq : task.seq_tokens) {
- min_len = std::min(min_len, seq.size());
- }
- task.common_prefix = 0;
- for (size_t k = 0; k < min_len; ++k) {
- auto token = task.seq_tokens[0][k];
- bool all_same = true;
- for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
- if (task.seq_tokens[i][k] != token) {
- all_same = false;
- break;
- }
- }
- if (!all_same) {
- break;
- }
- ++task.common_prefix;
- }
- task.required_tokens = task.common_prefix;
- for (auto& seq : task.seq_tokens) {
- task.required_tokens += seq.size() - task.common_prefix;
- }
- return true;
- }
- //
- // Calculates score for multiple choice tasks with single correct answer from prompt.
- // Commonly used LLM evaluation metrics of this type are
- // * ARC
- // * HellaSwag
- // * MMLU
- // * TruthfulQA
- //
- // Validation datasets for these 4 tests can be found at
- // https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
- // The data for these datasets was extracted from
- // git@hf.co:datasets/allenai/ai2_arc
- // https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
- // git@hf.co:datasets/Stevross/mmlu
- // https://huggingface.co/datasets/truthful_qa
- //
- static void multiple_choice_score(llama_context * ctx, const gpt_params & params) {
- std::istringstream strstream(params.prompt);
- uint32_t n_task;
- strstream.read((char *)&n_task, sizeof(n_task));
- if (strstream.fail() || n_task == 0) {
- printf("%s: no tasks\n", __func__);
- return;
- }
- printf("%s: there are %u tasks in prompt\n", __func__, n_task);
- std::vector<uint32_t> task_pos(n_task);
- strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
- if (strstream.fail()) {
- printf("%s: failed to raad task positions from prompt\n", __func__);
- return;
- }
- std::vector<multiple_choice_task> tasks;
- if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
- // Use all tasks
- tasks.resize(n_task);
- printf("%s: reading tasks", __func__);
- int n_dot = n_task/100;
- int i = 0;
- for (auto& task : tasks) {
- ++i;
- if (!task.deserialize(strstream)) {
- printf("%s: failed to read task %d of %u\n", __func__, i, n_task);
- return;
- }
- if (i%n_dot == 0) printf(".");
- }
- printf("done\n");
- }
- else {
- printf("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
- std::mt19937 rng(1);
- std::vector<int> aux(n_task);
- for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
- float scale = 1.f/(1.f + (float)std::mt19937::max());
- tasks.resize(params.multiple_choice_tasks);
- for (auto& task : tasks) {
- int j = (int)(scale * rng() * aux.size());
- int idx = aux[j];
- aux[j] = aux.back();
- aux.pop_back();
- strstream.seekg(task_pos[idx], std::ios::beg);
- if (!task.deserialize(strstream)) {
- printf("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
- return;
- }
- }
- n_task = params.multiple_choice_tasks;
- }
- // This is needed as usual for LLaMA models
- const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
- printf("%s: preparing task data", __func__);
- fflush(stdout);
- if (n_task > 500) {
- printf("...");
- fflush(stdout);
- std::atomic<int> counter(0);
- std::atomic<int> n_bad(0);
- auto prepare = [&counter, &n_bad, &tasks, ctx, add_bos] () {
- int num_tasks = tasks.size();
- int n_bad_local = 0;
- while (true) {
- int first = counter.fetch_add(K_TOKEN_CHUNK);
- if (first >= num_tasks) {
- if (n_bad_local > 0) n_bad += n_bad_local;
- break;
- }
- int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
- for (int i = first; i < last; ++i) {
- if (!multiple_choice_prepare_one_task(ctx, add_bos, tasks[i], false)) ++n_bad_local;
- }
- }
- };
- size_t max_thread = std::thread::hardware_concurrency();
- max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
- std::vector<std::thread> workers(max_thread-1);
- for (auto& w : workers) w = std::thread(prepare);
- prepare();
- for (auto& w : workers) w.join();
- printf("done\n");
- fflush(stdout);
- int nbad = n_bad;
- if (nbad > 0) {
- printf("%s: found %d malformed tasks\n", __func__, nbad);
- return;
- }
- } else {
- int n_dot = n_task/100;
- int i_task = 0;
- for (auto& task : tasks) {
- ++i_task;
- if (!multiple_choice_prepare_one_task(ctx, add_bos, task, true)) {
- return;
- }
- if (i_task%n_dot == 0) {
- printf(".");
- fflush(stdout);
- }
- }
- printf("done\n");
- }
- printf("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
- printf("\ntask\tacc_norm\n");
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
- const int n_ctx = llama_n_ctx(ctx);
- const int n_batch = params.n_batch;
- const int max_tasks_per_batch = 32;
- const int max_seq = 4*max_tasks_per_batch;
- llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
- std::vector<float> tok_logits(n_vocab);
- std::vector<float> batch_logits(n_vocab*n_ctx);
- std::vector<std::pair<size_t, llama_token>> eval_pairs;
- std::vector<float> eval_results;
- std::vector<std::thread> workers(std::thread::hardware_concurrency());
- std::vector<int> batch_indeces;
- int n_done = 0;
- int n_correct = 0;
- int n_tot_answers = 0;
- for (size_t i0 = 0; i0 < tasks.size(); i0++) {
- int n_cur = 0;
- size_t i1 = i0;
- size_t i_batch = 0; // this tells us where in `llama_batch` we are currently
- llama_batch_clear(batch);
- // batch as much tasks as possible into the available context
- // each task has 4 unique seuqnce ids - one for each ending
- // the common prefix is shared among the 4 sequences to save tokens
- // we extract logits only from the last common token and from all ending tokens of each sequence
- int s0 = 0;
- while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
- auto& cur_task = tasks[i1];
- int num_answers = cur_task.seq_tokens.size();
- if (s0 + num_answers > max_seq) {
- break;
- }
- if (int(batch_indeces.size()) != num_answers) {
- batch_indeces.resize(num_answers);
- }
- for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;
- for (size_t i = 0; i < cur_task.common_prefix; ++i) {
- //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
- llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
- }
- batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
- for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
- for (size_t i = cur_task.common_prefix; i < cur_task.seq_tokens[s].size(); ++i) {
- llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, true);
- }
- }
- s0 += num_answers;
- cur_task.i_batch = i_batch;
- i_batch += cur_task.required_tokens;
- n_cur += cur_task.required_tokens;
- if (++i1 == tasks.size()) {
- break;
- }
- }
- if (i0 == i1) {
- fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
- return;
- }
- llama_kv_cache_clear(ctx);
- // decode all tasks [i0, i1)
- if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
- fprintf(stderr, "%s: llama_decode() failed\n", __func__);
- return;
- }
- // Compute log-probs in parallel
- // First we collect all tasks
- eval_pairs.clear();
- for (size_t i = i0; i < i1; ++i) {
- auto& cur_task = tasks[i];
- size_t li = cur_task.common_prefix;
- for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
- for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
- eval_pairs.emplace_back(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]);
- }
- ++li;
- }
- }
- // Then we do the actual calculation
- compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
- size_t ir = 0;
- // compute the logprobs for each ending of the decoded tasks
- for (size_t i = i0; i < i1; ++i) {
- auto & cur_task = tasks[i];
- //printf("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
- //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
- // if (cur_task.mc1.labels[j] == 1) {
- // printf("%d", j+1);
- // }
- //}
- //printf("\n common_prefix: %zu\n", cur_task.common_prefix);
- std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(cur_task.i_batch + cur_task.common_prefix - 1), n_vocab*sizeof(float));
- const auto first_probs = softmax(tok_logits);
- cur_task.log_probs.resize(cur_task.seq_tokens.size());
- for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
- size_t count = 1;
- float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
- for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
- //printf(" %zu %g\n", ir, eval_results[ir]);
- ++count;
- log_prob += eval_results[ir++];
- }
- cur_task.log_probs[s] = log_prob / count;
- //printf(" Final: %g\n", log_prob / count);
- //printf(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
- }
- // Find the ending with maximum logprob
- size_t logprob_max_idx = 0;
- float logprob_max_val = cur_task.log_probs[0];
- for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
- if (cur_task.log_probs[s] > logprob_max_val) {
- logprob_max_val = cur_task.log_probs[s];
- logprob_max_idx = s;
- }
- }
- n_tot_answers += cur_task.log_probs.size();
- if (cur_task.mc1.labels[logprob_max_idx] == 1) {
- ++n_correct;
- }
- ++n_done;
- // Print the accumulated accuracy mean x 100
- printf("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
- fflush(stdout);
- }
- i0 = i1 - 1;
- }
- llama_batch_free(batch);
- if (n_done < 100) return;
- float p = 1.f*n_correct/n_done;
- float sigma = sqrt(p*(1-p)/(n_done-1));
- printf("\n Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
- p = 1.f*n_done/n_tot_answers;
- sigma = sqrt(p*(1-p)/(n_done-1));
- printf("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
- printf("\n");
- }
- static void kl_divergence(llama_context * ctx, const gpt_params & params) {
- if (params.logits_file.empty()) {
- fprintf(stderr, "%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
- return;
- }
- std::ifstream in(params.logits_file.c_str(), std::ios::binary);
- if (!in) {
- fprintf(stderr, "%s: failed to open %s\n", __func__, params.logits_file.c_str());
- return;
- }
- {
- char check[9]; check[8] = 0;
- in.read(check, 8);
- if (in.fail() || strncmp("_logits_", check, 8) != 0) {
- fprintf(stderr, "%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
- return;
- }
- }
- uint32_t n_ctx;
- in.read((char *)&n_ctx, sizeof(n_ctx));
- if (n_ctx > llama_n_ctx(ctx)) {
- fprintf(stderr, "%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
- __func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
- }
- int n_vocab, n_chunk;
- in.read((char *)&n_vocab, sizeof(n_vocab));
- in.read((char *)&n_chunk, sizeof(n_chunk));
- if (in.fail()) {
- fprintf(stderr, "%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
- return;
- }
- if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
- fprintf(stderr, "%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
- }
- std::vector<llama_token> tokens(n_ctx * n_chunk);
- if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
- fprintf(stderr, "%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
- return;
- }
- const int n_batch = params.n_batch;
- const int num_batches = (n_ctx + n_batch - 1)/n_batch;
- const int nv = 2*((n_vocab + 1)/2) + 4;
- const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
- std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
- std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
- std::vector<float> logits;
- if (num_batches > 1) {
- logits.reserve(n_ctx * n_vocab);
- }
- std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
- auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
- if (count < 1) {
- return std::make_pair(0., 0.);
- }
- double f = sum/count;
- double df = sum2/count - f*f;
- df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
- return std::make_pair(f, df);
- };
- kl_divergence_result kld;
- auto kld_ptr = kld_values.data();
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * n_ctx;
- const int end = start + n_ctx;
- const auto t_start = std::chrono::high_resolution_clock::now();
- if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
- fprintf(stderr, "%s: failed reading log-probs for chunk %d\n", __func__, i);
- return;
- }
- // clear the KV cache
- llama_kv_cache_clear(ctx);
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- // save original token and restore it after eval
- const auto token_org = tokens[batch_start];
- // add BOS token for the first batch of each chunk
- if (add_bos && j == 0) {
- tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
- }
- if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return;
- }
- // restore the original token in case it was set to BOS
- tokens[batch_start] = token_org;
- if (num_batches > 1) {
- const auto * batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
- }
- }
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- fprintf(stderr, "%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
- printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence Same top\n");
- }
- const int first = n_ctx/2;
- const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
- process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
- workers, log_probs_uint16, kld, kld_ptr);
- kld_ptr += n_ctx - 1 - first;
- auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
- auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count);
- auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
- auto p_top = 1.*kld.n_same_top/kld.count;
- auto d_p_top = sqrt(p_top*(1 - p_top)/(kld.count - 1));
- printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf %.5f ± %.5f\n", i+1, exp(ppl.first),
- log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second,
- p_top, d_p_top);
- fflush(stdout);
- logits.clear();
- }
- printf("\n");
- if (kld.count < 100) return; // we do not wish to do statistics on so few values
- std::sort(kld_values.begin(), kld_values.end());
- printf("===== KL-divergence statistics\n");
- auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
- printf("Average: %10.6f ±%10.6lf\n", kl_div.first, kl_div.second);
- auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
- : kld_values[kld_values.size()/2];
- printf("Median : %10.6f\n", kld_median);
- auto percentile = [&kld_values] (float fraction) {
- if (fraction <= 0) return kld_values.front();
- if (fraction >= 1) return kld_values.back();
- float p = fraction*(kld_values.size() - 1);
- size_t ip = size_t(p); p -= ip;
- return (1 - p)*kld_values[ip] + p*kld_values[std::min(ip+1, kld_values.size()-1)];
- };
- printf("Maximum: %10.6f\n", kld_values.back());
- printf("KLD_99 : %10.6f\n", percentile(0.99f));
- printf("KLD_95 : %10.6f\n", percentile(0.95f));
- printf("KLD_90 : %10.6f\n", percentile(0.90f));
- printf("Minimum: %10.6f\n", kld_values.front());
- printf("KLD_01 : %10.6f\n", percentile(0.01f));
- printf("KLD_05 : %10.6f\n", percentile(0.05f));
- printf("KLD_10 : %10.6f\n", percentile(0.10f));
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- params.n_batch = 512;
- if (!gpt_params_parse(argc, argv, params)) {
- return 1;
- }
- params.logits_all = true;
- params.n_batch = std::min(params.n_batch, params.n_ctx);
- if (params.ppl_stride > 0) {
- fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
- params.n_ctx, params.n_ctx + params.ppl_stride/2);
- params.n_ctx += params.ppl_stride/2;
- }
- print_build_info();
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.random_prompt) {
- params.prompt = gpt_random_prompt(rng);
- }
- llama_backend_init();
- llama_numa_init(params.numa);
- llama_model * model;
- llama_context * ctx;
- // load the model and apply lora adapter, if any
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == NULL) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return 1;
- }
- const int n_ctx_train = llama_n_ctx_train(model);
- if (params.n_ctx > n_ctx_train) {
- fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
- __func__, n_ctx_train, params.n_ctx);
- }
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "%s\n", get_system_info(params).c_str());
- }
- struct results_perplexity results;
- if (params.hellaswag) {
- hellaswag_score(ctx, params);
- } else if (params.winogrande) {
- winogrande_score(ctx, params);
- } else if (params.multiple_choice) {
- multiple_choice_score(ctx, params);
- } else if (params.kl_divergence) {
- kl_divergence(ctx, params);
- } else {
- results = perplexity(ctx, params);
- }
- llama_print_timings(ctx);
- write_logfile(ctx, params, model, results);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|