Нема описа

Georgi Gerganov cd776c37c9 ci : close all stale issues at once (#6115) пре 1 година
.devops 6a87ac3a52 fix editorconfig check break (#5879) пре 1 година
.github cd776c37c9 ci : close all stale issues at once (#6115) пре 1 година
ci 8ced9f7e32 add wait() to make code stable (#5895) пре 1 година
cmake c41ea36eaa cmake : MSVC instruction detection (fixed up #809) (#3923) пре 2 година
common 15961ec04d common : refactor nested if causing error C1061 on MSVC (#6101) пре 1 година
docs ff8238f71d docs : add llama-star arch idea пре 2 година
examples b5f4ae09c3 gritlm : add initial README.md (#6086) пре 1 година
gguf-py 12247f4c69 llama : add Command-R support (#6033) пре 1 година
grammars 3de31677d3 grammars : blacklists character control set (#5888) пре 1 година
kompute @ 4565194ed7 fbf1ddec69 Nomic Vulkan backend (#4456) пре 1 година
kompute-shaders fbf1ddec69 Nomic Vulkan backend (#4456) пре 1 година
media 62b3e81aae media : add logos and banners пре 2 година
models ea5497df5d gpt2 : Add gpt2 architecture integration (#4555) пре 2 година
pocs a07d0fee1f ggml : add mmla kernels for quantized GEMM (#4966) пре 1 година
prompts 37c746d687 llama : add Qwen support (#4281) пре 2 година
requirements da3b9ba2b7 convert-hf-to-gguf : require einops for InternLM2ForCausalLM (#5792) пре 1 година
scripts b838b53ad6 sync : ggml пре 1 година
spm-headers df334a1125 swift : package no longer use ggml dependency (#5465) пре 1 година
tests aab606a11f llama : add Orion chat template (#6066) пре 1 година
.clang-tidy 00d62adb79 fix some warnings from gcc and clang-tidy (#3038) пре 2 година
.dockerignore ea55295a74 docker : ignore Git files (#3314) пре 2 година
.ecrc fbf1ddec69 Nomic Vulkan backend (#4456) пре 1 година
.editorconfig 800a489e4a llama.swiftui : add bench functionality (#4483) пре 2 година
.flake8 2891c8aa9a Add support for BERT embedding models (#5423) пре 1 година
.gitignore 381da2d9f0 metal : build metallib + fix embed path (#6015) пре 1 година
.gitmodules fbf1ddec69 Nomic Vulkan backend (#4456) пре 1 година
.pre-commit-config.yaml 5ddf7ea1fb hooks : setting up flake8 and pre-commit hooks (#1681) пре 2 година
CMakeLists.txt 381da2d9f0 metal : build metallib + fix embed path (#6015) пре 1 година
LICENSE 6a9a67f0be Add LICENSE (#21) пре 2 година
Makefile 131b058409 make : ggml-metal.o depends on ggml.h пре 1 година
Package.swift 83796e62bc llama : refactor unicode stuff (#5992) пре 1 година
README-sycl.md 3814a07392 [SYCL] Add support for SYCL Nvidia target (#5738) пре 1 година
README.md dfbfdd60f9 readme : add wllama as a wasm binding (#6100) пре 1 година
build.zig 83796e62bc llama : refactor unicode stuff (#5992) пре 1 година
codecov.yml 73a12a6344 cov : disable comment in PRs (#2989) пре 2 година
convert-hf-to-gguf.py 12247f4c69 llama : add Command-R support (#6033) пре 1 година
convert-llama-ggml-to-gguf.py 4d4d2366fc convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (#5821) пре 1 година
convert-lora-to-ggml.py 05490fad7f add safetensors support to convert-lora-to-ggml.py (#5062) пре 2 година
convert-persimmon-to-gguf.py dbd8828eb0 py : fix persimmon `n_rot` conversion (#5460) пре 1 година
convert.py 69ff61397d llama : support models without vocabulary (#5798) пре 1 година
flake.lock c78541479c nix: update flake.lock (#5969) пре 1 година
flake.nix cb5e8f7fc4 build(nix): Introduce flake.formatter for `nix fmt` (#5687) пре 1 година
ggml-alloc.c f30ea47a87 llama : add pipeline parallelism support (#6017) пре 1 година
ggml-alloc.h f30ea47a87 llama : add pipeline parallelism support (#6017) пре 1 година
ggml-backend-impl.h f30ea47a87 llama : add pipeline parallelism support (#6017) пре 1 година
ggml-backend.c f30ea47a87 llama : add pipeline parallelism support (#6017) пре 1 година
ggml-backend.h f30ea47a87 llama : add pipeline parallelism support (#6017) пре 1 година
ggml-common.h 8030da7afe ggml : reuse quantum structs across backends (#5943) пре 1 година
ggml-cuda.cu 3020327f6c cuda : disable unused cudaLaunchHostFunc code (#6078) пре 1 година
ggml-cuda.h a0b3ac8c48 ggml : introduce GGML_CALL function annotation (#4850) пре 2 година
ggml-impl.h 3202361c5b ggml, ci : Windows ARM runner and build fixes (#5979) пре 1 година
ggml-kompute.cpp f30ea47a87 llama : add pipeline parallelism support (#6017) пре 1 година
ggml-kompute.h fbf1ddec69 Nomic Vulkan backend (#4456) пре 1 година
ggml-metal.h 5f14ee0b0c metal : add debug capture backend function (ggml/694) пре 1 година
ggml-metal.m 381da2d9f0 metal : build metallib + fix embed path (#6015) пре 1 година
ggml-metal.metal 381da2d9f0 metal : build metallib + fix embed path (#6015) пре 1 година
ggml-mpi.c 5bf2a27718 ggml : remove src0 and src1 from ggml_tensor and rename opt to src (#2178) пре 2 година
ggml-mpi.h 5656d10599 mpi : add support for distributed inference via MPI (#2099) пре 2 година
ggml-opencl.cpp 9fa2627347 ggml : introduce ggml_status (ggml/750) пре 1 година
ggml-opencl.h a1d6df129b Add OpenCL add kernel (#5151) пре 2 година
ggml-quants.c 8030da7afe ggml : reuse quantum structs across backends (#5943) пре 1 година
ggml-quants.h 8030da7afe ggml : reuse quantum structs across backends (#5943) пре 1 година
ggml-sycl.cpp 46acb36767 fix set main gpu error (#6073) пре 1 година
ggml-sycl.h 46acb36767 fix set main gpu error (#6073) пре 1 година
ggml-vulkan-shaders.hpp 61d1c88e15 Vulkan Improvements (#5835) пре 1 година
ggml-vulkan.cpp dc0f612548 ggml:fix finding transfer queue family index error (#6094) пре 1 година
ggml-vulkan.h 61d1c88e15 Vulkan Improvements (#5835) пре 1 година
ggml.c c47cf414ef ggml : add AVX512F SIMD (#6088) пре 1 година
ggml.h 7ce2c77f88 gguf : add support for I64 and F64 arrays (#6062) пре 1 година
ggml_vk_generate_shaders.py 61d1c88e15 Vulkan Improvements (#5835) пре 1 година
llama.cpp d84c48505f llama : fix Baichuan2 13B (#6092) пре 1 година
llama.h 877b4d0c62 llama : add support for control vectors (#5970) пре 1 година
mypy.ini b43ebde3b0 convert : partially revert PR #4818 (#5041) пре 2 година
requirements.txt 04ac0607e9 python : add check-requirements.sh and GitHub workflow (#4585) пре 2 година
unicode.cpp 83796e62bc llama : refactor unicode stuff (#5992) пре 1 година
unicode.h 83796e62bc llama : refactor unicode stuff (#5992) пре 1 година

README-sycl.md

llama.cpp for SYCL

Background

SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.

oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.

Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.

To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool SYCLomatic (Commercial release Intel® DPC++ Compatibility Tool) migrate to SYCL.

The llama.cpp for SYCL is used to support Intel GPUs.

For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).

News

  • 2024.3

    • Support multiple cards: --split-mode: [none|layer]; not support [row], it's on developing.
    • Support to assign main GPU by --main-gpu, replace $GGML_SYCL_DEVICE.
    • Support detecting all GPUs with level-zero and same top Max compute units.
    • Support OPs
    • hardsigmoid
    • hardswish
    • pool2d
  • 2024.1

    • Create SYCL backend for Intel GPU.
    • Support Windows build

OS

|OS|Status|Verified| |-|-|-| |Linux|Support|Ubuntu 22.04, Fedora Silverblue 39| |Windows|Support|Windows 11|

Intel GPU

Verified

|Intel GPU| Status | Verified Model| |-|-|-| |Intel Data Center Max Series| Support| Max 1550| |Intel Data Center Flex Series| Support| Flex 170| |Intel Arc Series| Support| Arc 770, 730M| |Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake| |Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7|

Note: If the EUs (Execution Unit) in iGPU is less than 80, the inference speed will be too slow to use.

Memory

The memory is a limitation to run LLM on GPUs.

When run llama.cpp, there is print log to show the applied memory on GPU. You could know how much memory to be used in your case. Like llm_load_tensors: buffer size = 3577.56 MiB.

For iGPU, please make sure the shared memory from host memory is enough. For llama-2-7b.Q4_0, recommend the host memory is 8GB+.

For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.

Nvidia GPU

Verified

|Intel GPU| Status | Verified Model| |-|-|-| |Ampere Series| Support| A100|

oneMKL

The current oneMKL release does not contain the oneMKL cuBlas backend. As a result for Nvidia GPU's oneMKL must be built from source.

git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
mkdir build
cd build
cmake -G Ninja .. -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON
ninja
// Add paths as necessary

Docker

Note:

  • Only docker on Linux is tested. Docker on WSL may not work.
  • You may need to install Intel GPU driver on the host machine (See the Linux section to know how to do that)

Build the image

You can choose between F16 and F32 build. F16 is faster for long-prompt inference.

# For F16:
#docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .

# Or, for F32:
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .

# Note: you can also use the ".devops/main-server.Dockerfile", which compiles the "server" example

Run

# Firstly, find all the DRI cards:
ls -la /dev/dri
# Then, pick the card that you want to use.

# For example with "/dev/dri/card1"
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33

Linux

Setup Environment

  1. Install Intel GPU driver.

a. Please install Intel GPU driver by official guide: Install GPU Drivers.

Note: for iGPU, please install the client GPU driver.

b. Add user to group: video, render.

sudo usermod -aG render username
sudo usermod -aG video username

Note: re-login to enable it.

c. Check

sudo apt install clinfo
sudo clinfo -l

Output (example):

Platform #0: Intel(R) OpenCL Graphics
 `-- Device #0: Intel(R) Arc(TM) A770 Graphics


Platform #0: Intel(R) OpenCL HD Graphics
 `-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
  1. Install Intel® oneAPI Base toolkit.

a. Please follow the procedure in Get the Intel® oneAPI Base Toolkit .

Recommend to install to default folder: /opt/intel/oneapi.

Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.

b. Check

source /opt/intel/oneapi/setvars.sh

sycl-ls

There should be one or more level-zero devices. Please confirm that at least one GPU is present, like [ext_oneapi_level_zero:gpu:0].

Output (example):

[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO  [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]

  1. Build locally:

Note:

  • You can choose between F16 and F32 build. F16 is faster for long-prompt inference.
  • By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for example/main only.

    mkdir -p build
    cd build
    source /opt/intel/oneapi/setvars.sh
    
    # For FP16:
    #cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
    
    # Or, for FP32:
    cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
    
    # For Nvidia GPUs
    cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
    
    # Build example/main only
    #cmake --build . --config Release --target main
    
    # Or, build all binary
    cmake --build . --config Release -v
    
    cd ..
    

or

./examples/sycl/build.sh

Run

  1. Put model file to folder models

You could download llama-2-7b.Q4_0.gguf as example.

  1. Enable oneAPI running environment

    source /opt/intel/oneapi/setvars.sh
    
  2. List device ID

Run without parameter:

./build/bin/ls-sycl-device

# or running the "main" executable and look at the output log:

./build/bin/main

Check the ID in startup log, like:

found 4 SYCL devices:
  Device 0: Intel(R) Arc(TM) A770 Graphics,	compute capability 1.3,
    max compute_units 512,	max work group size 1024,	max sub group size 32,	global mem size 16225243136
  Device 1: Intel(R) FPGA Emulation Device,	compute capability 1.2,
    max compute_units 24,	max work group size 67108864,	max sub group size 64,	global mem size 67065057280
  Device 2: 13th Gen Intel(R) Core(TM) i7-13700K,	compute capability 3.0,
    max compute_units 24,	max work group size 8192,	max sub group size 64,	global mem size 67065057280
  Device 3: Intel(R) Arc(TM) A770 Graphics,	compute capability 3.0,
    max compute_units 512,	max work group size 1024,	max sub group size 32,	global mem size 16225243136

|Attribute|Note| |-|-| |compute capability 1.3|Level-zero running time, recommended | |compute capability 3.0|OpenCL running time, slower than level-zero in most cases|

  1. Set device ID and execute llama.cpp

Set device ID = 0 by GGML_SYCL_DEVICE=0

GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33

or run by script:

./examples/sycl/run_llama2.sh

Note:

  • By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter --no-mmap to disable mmap() to skip this issue.
  1. Check the device ID in output

Like:

Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device

Windows

Setup Environment

  1. Install Intel GPU driver.

Please install Intel GPU driver by official guide: Install GPU Drivers.

Note: The driver is mandatory for compute function.

  1. Install Visual Studio.

Please install Visual Studio which impact oneAPI environment enabling in Windows.

  1. Install Intel® oneAPI Base toolkit.

a. Please follow the procedure in Get the Intel® oneAPI Base Toolkit .

Recommend to install to default folder: C:\Program Files (x86)\Intel\oneAPI.

Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder.

b. Enable oneAPI running environment:

  • In Search, input 'oneAPI'.

Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"

  • In Run:

In CMD:

"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64

c. Check GPU

In oneAPI command line:

sycl-ls

There should be one or more level-zero devices. Please confirm that at least one GPU is present, like [ext_oneapi_level_zero:gpu:0].

Output (example):

[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO  [31.0.101.5186]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
  1. Install cmake & make

a. Download & install cmake for Windows: https://cmake.org/download/

b. Download & install mingw-w64 make for Windows provided by w64devkit

  • Download the latest fortran version of w64devkit.

  • Extract w64devkit on your pc.

  • Add the bin folder path in the Windows system PATH environment, like C:\xxx\w64devkit\bin\.

Build locally:

In oneAPI command line window:

mkdir -p build
cd build
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force

::  for FP16
::  faster for long-prompt inference
::  cmake -G "MinGW Makefiles" ..  -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx  -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON

::  for FP32
cmake -G "MinGW Makefiles" ..  -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx  -DCMAKE_BUILD_TYPE=Release


::  build example/main only
::  make main

::  build all binary
make -j
cd ..

or

.\examples\sycl\win-build-sycl.bat

Note:

  • By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for example/main only.

Run

  1. Put model file to folder models

You could download llama-2-7b.Q4_0.gguf as example.

  1. Enable oneAPI running environment
  • In Search, input 'oneAPI'.

Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"

  • In Run:

In CMD:

"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
  1. List device ID

Run without parameter:

build\bin\ls-sycl-device.exe

or

build\bin\main.exe

Check the ID in startup log, like:

found 4 SYCL devices:
  Device 0: Intel(R) Arc(TM) A770 Graphics,	compute capability 1.3,
    max compute_units 512,	max work group size 1024,	max sub group size 32,	global mem size 16225243136
  Device 1: Intel(R) FPGA Emulation Device,	compute capability 1.2,
    max compute_units 24,	max work group size 67108864,	max sub group size 64,	global mem size 67065057280
  Device 2: 13th Gen Intel(R) Core(TM) i7-13700K,	compute capability 3.0,
    max compute_units 24,	max work group size 8192,	max sub group size 64,	global mem size 67065057280
  Device 3: Intel(R) Arc(TM) A770 Graphics,	compute capability 3.0,
    max compute_units 512,	max work group size 1024,	max sub group size 32,	global mem size 16225243136

|Attribute|Note| |-|-| |compute capability 1.3|Level-zero running time, recommended | |compute capability 3.0|OpenCL running time, slower than level-zero in most cases|

  1. Set device ID and execute llama.cpp

Set device ID = 0 by set GGML_SYCL_DEVICE=0

set GGML_SYCL_DEVICE=0
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0

or run by script:

.\examples\sycl\win-run-llama2.bat

Note:

  • By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter --no-mmap to disable mmap() to skip this issue.
  1. Check the device ID in output

Like:

Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device

Environment Variable

Build

|Name|Value|Function| |-|-|-| |LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path.
For FP32/FP16, LLAMA_SYCL=ON is mandatory.| |LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference.
For FP32, not set it.| |CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path| |CMAKE_CXX_COMPILER|icpx (Linux), icx (Windows)|use icpx/icx for SYCL code path|

Running

|Name|Value|Function| |-|-|-| |GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output| |GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG| |ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.
Recommended to use when --split-mode = layer|

Known Issue

  • Hang during startup

llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.

Solution: add --no-mmap or --mmap 0.

  • Split-mode: [row] is not supported

It's on developing.

Q&A

  • Error: error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory.

Miss to enable oneAPI running environment.

Install oneAPI base toolkit and enable it by: source /opt/intel/oneapi/setvars.sh.

  • In Windows, no result, not error.

Miss to enable oneAPI running environment.

  • Meet compile error.

Remove folder build and try again.

  • I can not see [ext_oneapi_level_zero:gpu:0] afer install GPU driver in Linux.

Please run sudo sycl-ls.

If you see it in result, please add video/render group to your ID:

  sudo usermod -aG render username
  sudo usermod -aG video username

Then relogin.

If you do not see it, please check the installation GPU steps again.

Todo

  • Support multiple cards.