Nav apraksta

Ziang Wu d0e2f6416b doc: fix typo in MobileVLM-README.md (#6181) 1 gadu atpakaļ
.devops e190f1fca6 nix: make `xcrun` visible in Nix sandbox for precompiling Metal shaders (#6118) 1 gadu atpakaļ
.github a016026a3a server: continuous performance monitoring and PR comment (#6283) 1 gadu atpakaļ
ci 280345968d cuda : rename build flag to LLAMA_CUDA (#6299) 1 gadu atpakaļ
cmake c41ea36eaa cmake : MSVC instruction detection (fixed up #809) (#3923) 2 gadi atpakaļ
common e562b9714b common : change --no-penalize-nl to --penalize-nl (#6334) 1 gadu atpakaļ
docs 280345968d cuda : rename build flag to LLAMA_CUDA (#6299) 1 gadu atpakaļ
examples d0e2f6416b doc: fix typo in MobileVLM-README.md (#6181) 1 gadu atpakaļ
ggml-cuda 55c1b2a3bb IQ1_M: 1.75 bpw quantization (#6302) 1 gadu atpakaļ
gguf-py 55c1b2a3bb IQ1_M: 1.75 bpw quantization (#6302) 1 gadu atpakaļ
grammars 3de31677d3 grammars : blacklists character control set (#5888) 1 gadu atpakaļ
kompute @ 4565194ed7 fbf1ddec69 Nomic Vulkan backend (#4456) 1 gadu atpakaļ
kompute-shaders fbf1ddec69 Nomic Vulkan backend (#4456) 1 gadu atpakaļ
media 62b3e81aae media : add logos and banners 2 gadi atpakaļ
models ea5497df5d gpt2 : Add gpt2 architecture integration (#4555) 2 gadi atpakaļ
pocs a07d0fee1f ggml : add mmla kernels for quantized GEMM (#4966) 1 gadu atpakaļ
prompts 37c746d687 llama : add Qwen support (#4281) 2 gadi atpakaļ
requirements da3b9ba2b7 convert-hf-to-gguf : require einops for InternLM2ForCausalLM (#5792) 1 gadu atpakaļ
scripts 280345968d cuda : rename build flag to LLAMA_CUDA (#6299) 1 gadu atpakaļ
spm-headers df334a1125 swift : package no longer use ggml dependency (#5465) 1 gadu atpakaļ
tests 55c1b2a3bb IQ1_M: 1.75 bpw quantization (#6302) 1 gadu atpakaļ
.clang-tidy ae1f211ce2 cuda : refactor into multiple files (#6269) 1 gadu atpakaļ
.dockerignore ea55295a74 docker : ignore Git files (#3314) 2 gadi atpakaļ
.ecrc fbf1ddec69 Nomic Vulkan backend (#4456) 1 gadu atpakaļ
.editorconfig 800a489e4a llama.swiftui : add bench functionality (#4483) 2 gadi atpakaļ
.flake8 2891c8aa9a Add support for BERT embedding models (#5423) 1 gadu atpakaļ
.gitignore 64e7b47c69 examples : add "retrieval" (#6193) 1 gadu atpakaļ
.gitmodules fbf1ddec69 Nomic Vulkan backend (#4456) 1 gadu atpakaļ
.pre-commit-config.yaml 5ddf7ea1fb hooks : setting up flake8 and pre-commit hooks (#1681) 2 gadi atpakaļ
CMakeLists.txt 32c8486e1f wpm : portable unicode tolower (#6305) 1 gadu atpakaļ
LICENSE 6a9a67f0be Add LICENSE (#21) 2 gadi atpakaļ
Makefile 3a0345970e make : whitespace 1 gadu atpakaļ
Package.swift 32c8486e1f wpm : portable unicode tolower (#6305) 1 gadu atpakaļ
README-sycl.md 59c17f02de add blog link (#6222) 1 gadu atpakaļ
README.md 1740d6dd4e readme : add php api bindings (#6326) 1 gadu atpakaļ
build.zig 32c8486e1f wpm : portable unicode tolower (#6305) 1 gadu atpakaļ
codecov.yml 73a12a6344 cov : disable comment in PRs (#2989) 2 gadi atpakaļ
convert-hf-to-gguf.py e097633f63 convert-hf : fix exception in sentencepiece with added tokens (#6320) 1 gadu atpakaļ
convert-llama-ggml-to-gguf.py 4d4d2366fc convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (#5821) 1 gadu atpakaļ
convert-lora-to-ggml.py 05490fad7f add safetensors support to convert-lora-to-ggml.py (#5062) 2 gadi atpakaļ
convert-persimmon-to-gguf.py dbd8828eb0 py : fix persimmon `n_rot` conversion (#5460) 1 gadu atpakaļ
convert.py 3a6efdd03c convert : use f32 outtype for bf16 tensors (#6106) 1 gadu atpakaļ
flake.lock 43139cc528 flake.lock: Update (#6266) 1 gadu atpakaļ
flake.nix 53c7ec53d5 nix: ci: dont test cuda and rocm (for now) 1 gadu atpakaļ
ggml-alloc.c 2bf8d0f7c4 backend : offload large batches to GPU (#6083) 1 gadu atpakaļ
ggml-alloc.h f30ea47a87 llama : add pipeline parallelism support (#6017) 1 gadu atpakaļ
ggml-backend-impl.h 2bf8d0f7c4 backend : offload large batches to GPU (#6083) 1 gadu atpakaļ
ggml-backend.c 280345968d cuda : rename build flag to LLAMA_CUDA (#6299) 1 gadu atpakaļ
ggml-backend.h 2bf8d0f7c4 backend : offload large batches to GPU (#6083) 1 gadu atpakaļ
ggml-common.h cbc8343619 Make IQ1_M work for QK_K = 64 (#6327) 1 gadu atpakaļ
ggml-cuda.cu 557410b8f0 llama : greatly reduce output buffer memory usage (#6122) 1 gadu atpakaļ
ggml-cuda.h 2bf8d0f7c4 backend : offload large batches to GPU (#6083) 1 gadu atpakaļ
ggml-impl.h 3202361c5b ggml, ci : Windows ARM runner and build fixes (#5979) 1 gadu atpakaļ
ggml-kompute.cpp 557410b8f0 llama : greatly reduce output buffer memory usage (#6122) 1 gadu atpakaļ
ggml-kompute.h fbf1ddec69 Nomic Vulkan backend (#4456) 1 gadu atpakaļ
ggml-metal.h 5f14ee0b0c metal : add debug capture backend function (ggml/694) 1 gadu atpakaļ
ggml-metal.m 557410b8f0 llama : greatly reduce output buffer memory usage (#6122) 1 gadu atpakaļ
ggml-metal.metal cbc8343619 Make IQ1_M work for QK_K = 64 (#6327) 1 gadu atpakaļ
ggml-mpi.c 5bf2a27718 ggml : remove src0 and src1 from ggml_tensor and rename opt to src (#2178) 2 gadi atpakaļ
ggml-mpi.h 5656d10599 mpi : add support for distributed inference via MPI (#2099) 2 gadi atpakaļ
ggml-opencl.cpp 557410b8f0 llama : greatly reduce output buffer memory usage (#6122) 1 gadu atpakaļ
ggml-opencl.h a1d6df129b Add OpenCL add kernel (#5151) 2 gadi atpakaļ
ggml-quants.c cbc8343619 Make IQ1_M work for QK_K = 64 (#6327) 1 gadu atpakaļ
ggml-quants.h 55c1b2a3bb IQ1_M: 1.75 bpw quantization (#6302) 1 gadu atpakaļ
ggml-sycl.cpp 25f4a613c4 [SYCL] fix set main gpu crash (#6339) 1 gadu atpakaļ
ggml-sycl.h ddf6568510 [SYCL] offload op (#6217) 1 gadu atpakaļ
ggml-vulkan-shaders.hpp 61d1c88e15 Vulkan Improvements (#5835) 1 gadu atpakaļ
ggml-vulkan.cpp 557410b8f0 llama : greatly reduce output buffer memory usage (#6122) 1 gadu atpakaļ
ggml-vulkan.h 61d1c88e15 Vulkan Improvements (#5835) 1 gadu atpakaļ
ggml.c e5b89a441a ggml : fix bounds checking of zero size views (#6347) 1 gadu atpakaļ
ggml.h 557410b8f0 llama : greatly reduce output buffer memory usage (#6122) 1 gadu atpakaļ
ggml_vk_generate_shaders.py 61d1c88e15 Vulkan Improvements (#5835) 1 gadu atpakaļ
llama.cpp 32c8486e1f wpm : portable unicode tolower (#6305) 1 gadu atpakaļ
llama.h 557410b8f0 llama : greatly reduce output buffer memory usage (#6122) 1 gadu atpakaļ
mypy.ini b43ebde3b0 convert : partially revert PR #4818 (#5041) 2 gadi atpakaļ
requirements.txt 04ac0607e9 python : add check-requirements.sh and GitHub workflow (#4585) 2 gadi atpakaļ
unicode-data.cpp 32c8486e1f wpm : portable unicode tolower (#6305) 1 gadu atpakaļ
unicode-data.h 32c8486e1f wpm : portable unicode tolower (#6305) 1 gadu atpakaļ
unicode.cpp 32c8486e1f wpm : portable unicode tolower (#6305) 1 gadu atpakaļ
unicode.h 32c8486e1f wpm : portable unicode tolower (#6305) 1 gadu atpakaļ

README-sycl.md

llama.cpp for SYCL

Background

SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.

oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.

Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.

To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool SYCLomatic (Commercial release Intel® DPC++ Compatibility Tool) migrate to SYCL.

The llama.cpp for SYCL is used to support Intel GPUs.

For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).

News

  • 2024.3

    • A blog is published: Run LLM on all Intel GPUs Using llama.cpp: intel.com or medium.com.
    • New base line is ready: tag b2437.
    • Support multiple cards: --split-mode: [none|layer]; not support [row], it's on developing.
    • Support to assign main GPU by --main-gpu, replace $GGML_SYCL_DEVICE.
    • Support detecting all GPUs with level-zero and same top Max compute units.
    • Support OPs
    • hardsigmoid
    • hardswish
    • pool2d
  • 2024.1

    • Create SYCL backend for Intel GPU.
    • Support Windows build

OS

|OS|Status|Verified| |-|-|-| |Linux|Support|Ubuntu 22.04, Fedora Silverblue 39| |Windows|Support|Windows 11|

Intel GPU

Verified

|Intel GPU| Status | Verified Model| |-|-|-| |Intel Data Center Max Series| Support| Max 1550| |Intel Data Center Flex Series| Support| Flex 170| |Intel Arc Series| Support| Arc 770, 730M| |Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake| |Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7|

Note: If the EUs (Execution Unit) in iGPU is less than 80, the inference speed will be too slow to use.

Memory

The memory is a limitation to run LLM on GPUs.

When run llama.cpp, there is print log to show the applied memory on GPU. You could know how much memory to be used in your case. Like llm_load_tensors: buffer size = 3577.56 MiB.

For iGPU, please make sure the shared memory from host memory is enough. For llama-2-7b.Q4_0, recommend the host memory is 8GB+.

For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.

Nvidia GPU

Verified

|Intel GPU| Status | Verified Model| |-|-|-| |Ampere Series| Support| A100|

oneMKL for CUDA

The current oneMKL release does not contain the oneMKL cuBlas backend. As a result for Nvidia GPU's oneMKL must be built from source.

git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
mkdir build
cd build
cmake -G Ninja .. -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON
ninja
// Add paths as necessary

Docker

Note:

  • Only docker on Linux is tested. Docker on WSL may not work.
  • You may need to install Intel GPU driver on the host machine (See the Linux section to know how to do that)

Build the image

You can choose between F16 and F32 build. F16 is faster for long-prompt inference.

# For F16:
#docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .

# Or, for F32:
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .

# Note: you can also use the ".devops/server-intel.Dockerfile", which compiles the "server" example

Run

# Firstly, find all the DRI cards:
ls -la /dev/dri
# Then, pick the card that you want to use.

# For example with "/dev/dri/card1"
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33

Linux

Setup Environment

  1. Install Intel GPU driver.

a. Please install Intel GPU driver by official guide: Install GPU Drivers.

Note: for iGPU, please install the client GPU driver.

b. Add user to group: video, render.

sudo usermod -aG render username
sudo usermod -aG video username

Note: re-login to enable it.

c. Check

sudo apt install clinfo
sudo clinfo -l

Output (example):

Platform #0: Intel(R) OpenCL Graphics
 `-- Device #0: Intel(R) Arc(TM) A770 Graphics


Platform #0: Intel(R) OpenCL HD Graphics
 `-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
  1. Install Intel® oneAPI Base toolkit.

a. Please follow the procedure in Get the Intel® oneAPI Base Toolkit .

Recommend to install to default folder: /opt/intel/oneapi.

Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.

b. Check

source /opt/intel/oneapi/setvars.sh

sycl-ls

There should be one or more level-zero devices. Please confirm that at least one GPU is present, like [ext_oneapi_level_zero:gpu:0].

Output (example):

[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO  [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]

  1. Build locally:

Note:

  • You can choose between F16 and F32 build. F16 is faster for long-prompt inference.
  • By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for example/main only.

    mkdir -p build
    cd build
    source /opt/intel/oneapi/setvars.sh
    
    # For FP16:
    #cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
    
    # Or, for FP32:
    cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
    
    # For Nvidia GPUs
    cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
    
    # Build example/main only
    #cmake --build . --config Release --target main
    
    # Or, build all binary
    cmake --build . --config Release -v
    
    cd ..
    

or

./examples/sycl/build.sh

Run

  1. Put model file to folder models

You could download llama-2-7b.Q4_0.gguf as example.

  1. Enable oneAPI running environment

    source /opt/intel/oneapi/setvars.sh
    
  2. List device ID

Run without parameter:

./build/bin/ls-sycl-device

# or running the "main" executable and look at the output log:

./build/bin/main

Check the ID in startup log, like:

found 6 SYCL devices:
|  |                  |                                             |Compute   |Max compute|Max work|Max sub|               |
|ID|       Device Type|                                         Name|capability|units      |group   |group  |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]|               Intel(R) Arc(TM) A770 Graphics|       1.3|        512|    1024|     32|    16225243136|
| 1|[level_zero:gpu:1]|                    Intel(R) UHD Graphics 770|       1.3|         32|     512|     32|    53651849216|
| 2|    [opencl:gpu:0]|               Intel(R) Arc(TM) A770 Graphics|       3.0|        512|    1024|     32|    16225243136|
| 3|    [opencl:gpu:1]|                    Intel(R) UHD Graphics 770|       3.0|         32|     512|     32|    53651849216|
| 4|    [opencl:cpu:0]|         13th Gen Intel(R) Core(TM) i7-13700K|       3.0|         24|    8192|     64|    67064815616|
| 5|    [opencl:acc:0]|               Intel(R) FPGA Emulation Device|       1.2|         24|67108864|     64|    67064815616|

|Attribute|Note| |-|-| |compute capability 1.3|Level-zero running time, recommended | |compute capability 3.0|OpenCL running time, slower than level-zero in most cases|

  1. Device selection and execution of llama.cpp

There are two device selection modes:

  • Single device: Use one device assigned by user.
  • Multiple devices: Automatically choose the devices with the same biggest Max compute units.

|Device selection|Parameter| |-|-| |Single device|--split-mode none --main-gpu DEVICE_ID | |Multiple devices|--split-mode layer (default)|

Examples:

  • Use device 0:

    ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
    

or run by script:

./examples/sycl/run_llama2.sh 0
  • Use multiple devices:

    ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
    

or run by script:

./examples/sycl/run_llama2.sh

Note:

  • By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter --no-mmap to disable mmap() to skip this issue.
  1. Verify the device ID in output

Verify to see if the selected GPU is shown in the output, like:

detect 1 SYCL GPUs: [0] with top Max compute units:512

Or

use 1 SYCL GPUs: [0] with Max compute units:512

Windows

Setup Environment

  1. Install Intel GPU driver.

Please install Intel GPU driver by official guide: Install GPU Drivers.

Note: The driver is mandatory for compute function.

  1. Install Visual Studio.

Please install Visual Studio which impact oneAPI environment enabling in Windows.

  1. Install Intel® oneAPI Base toolkit.

a. Please follow the procedure in Get the Intel® oneAPI Base Toolkit .

Recommend to install to default folder: C:\Program Files (x86)\Intel\oneAPI.

Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder.

b. Enable oneAPI running environment:

  • In Search, input 'oneAPI'.

Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"

  • In Run:

In CMD:

"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64

c. Check GPU

In oneAPI command line:

sycl-ls

There should be one or more level-zero devices. Please confirm that at least one GPU is present, like [ext_oneapi_level_zero:gpu:0].

Output (example):

[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO  [31.0.101.5186]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
  1. Install cmake & make

a. Download & install cmake for Windows: https://cmake.org/download/

b. Download & install mingw-w64 make for Windows provided by w64devkit

  • Download the 1.19.0 version of w64devkit.

  • Extract w64devkit on your pc.

  • Add the bin folder path in the Windows system PATH environment, like C:\xxx\w64devkit\bin\.

Build locally:

In oneAPI command line window:

mkdir -p build
cd build
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force

::  for FP16
::  faster for long-prompt inference
::  cmake -G "MinGW Makefiles" ..  -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx  -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON

::  for FP32
cmake -G "MinGW Makefiles" ..  -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx  -DCMAKE_BUILD_TYPE=Release


::  build example/main only
::  make main

::  build all binary
make -j
cd ..

or

.\examples\sycl\win-build-sycl.bat

Note:

  • By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for example/main only.

Run

  1. Put model file to folder models

You could download llama-2-7b.Q4_0.gguf as example.

  1. Enable oneAPI running environment
  • In Search, input 'oneAPI'.

Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"

  • In Run:

In CMD:

"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
  1. List device ID

Run without parameter:

build\bin\ls-sycl-device.exe

or

build\bin\main.exe

Check the ID in startup log, like:

found 6 SYCL devices:
|  |                  |                                             |Compute   |Max compute|Max work|Max sub|               |
|ID|       Device Type|                                         Name|capability|units      |group   |group  |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]|               Intel(R) Arc(TM) A770 Graphics|       1.3|        512|    1024|     32|    16225243136|
| 1|[level_zero:gpu:1]|                    Intel(R) UHD Graphics 770|       1.3|         32|     512|     32|    53651849216|
| 2|    [opencl:gpu:0]|               Intel(R) Arc(TM) A770 Graphics|       3.0|        512|    1024|     32|    16225243136|
| 3|    [opencl:gpu:1]|                    Intel(R) UHD Graphics 770|       3.0|         32|     512|     32|    53651849216|
| 4|    [opencl:cpu:0]|         13th Gen Intel(R) Core(TM) i7-13700K|       3.0|         24|    8192|     64|    67064815616|
| 5|    [opencl:acc:0]|               Intel(R) FPGA Emulation Device|       1.2|         24|67108864|     64|    67064815616|

|Attribute|Note| |-|-| |compute capability 1.3|Level-zero running time, recommended | |compute capability 3.0|OpenCL running time, slower than level-zero in most cases|

  1. Device selection and execution of llama.cpp

There are two device selection modes:

  • Single device: Use one device assigned by user.
  • Multiple devices: Automatically choose the devices with the same biggest Max compute units.

|Device selection|Parameter| |-|-| |Single device|--split-mode none --main-gpu DEVICE_ID | |Multiple devices|--split-mode layer (default)|

Examples:

  • Use device 0:

    build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
    
  • Use multiple devices:

    build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
    

or run by script:

.\examples\sycl\win-run-llama2.bat

Note:

  • By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter --no-mmap to disable mmap() to skip this issue.
  1. Verify the device ID in output

Verify to see if the selected GPU is shown in the output, like:

detect 1 SYCL GPUs: [0] with top Max compute units:512

Or

use 1 SYCL GPUs: [0] with Max compute units:512

Environment Variable

Build

|Name|Value|Function| |-|-|-| |LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path.
For FP32/FP16, LLAMA_SYCL=ON is mandatory.| |LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference.
For FP32, not set it.| |CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path| |CMAKE_CXX_COMPILER|icpx (Linux), icx (Windows)|use icpx/icx for SYCL code path|

Running

|Name|Value|Function| |-|-|-| |GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG| |ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.
Recommended to use when --split-mode = layer|

Known Issue

  • Hang during startup

llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.

Solution: add --no-mmap or --mmap 0.

  • Split-mode: [row] is not supported

It's on developing.

Q&A

Note: please add prefix [SYCL] in issue title, so that we will check it as soon as possible.

  • Error: error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory.

Miss to enable oneAPI running environment.

Install oneAPI base toolkit and enable it by: source /opt/intel/oneapi/setvars.sh.

  • In Windows, no result, not error.

Miss to enable oneAPI running environment.

  • Meet compile error.

Remove folder build and try again.

  • I can not see [ext_oneapi_level_zero:gpu:0] afer install GPU driver in Linux.

Please run sudo sycl-ls.

If you see it in result, please add video/render group to your ID:

  sudo usermod -aG render username
  sudo usermod -aG video username

Then relogin.

If you do not see it, please check the installation GPU steps again.

Todo

  • Support row layer split for multiple card runs.