Fără Descriere

R0CKSTAR dc0623fddb webui: fix sidebar being covered by main content (#14082) 7 luni în urmă
.devops 33983057d0 musa: Upgrade MUSA SDK version to rc4.0.1 and use mudnn::Unary::IDENTITY op to accelerate D2D memory copy (#13647) 8 luni în urmă
.github 056eb74534 CANN: Enable labeler for Ascend NPU (#13914) 7 luni în urmă
ci 146b88e8b3 ci: fix CUDA build failure on autodl cloud machines (#14005) 7 luni în urmă
cmake 9f2da5871f llama : build windows releases with dl backends (#13220) 8 luni în urmă
common 745aa5319b llama : deprecate llama_kv_self_ API (#14030) 7 luni în urmă
docs ea1431b0fa docs : add "Quick start" section for new users (#13862) 7 luni în urmă
examples 745aa5319b llama : deprecate llama_kv_self_ API (#14030) 7 luni în urmă
ggml b460d16ae8 sycl: Add reorder to Q6_K mmvq implementation (#13885) 7 luni în urmă
gguf-py 1caae7fc6c gguf-py : add add_classifier_output_labels method to writer (#14031) 7 luni în urmă
grammars 1d36b3670b llama : move end-user examples to tools directory (#13249) 8 luni în urmă
include 745aa5319b llama : deprecate llama_kv_self_ API (#14030) 7 luni în urmă
licenses bd3f59f812 cmake : enable curl by default (#12761) 9 luni în urmă
media 2969019837 media : add SVG logo [no ci] (#12616) 9 luni în urmă
models 07e4351ce6 convert : allow partial update to the chkhsh pre-tokenizer list (#13847) 7 luni în urmă
pocs 7cc2d2c889 ggml : move AMX to the CPU backend (#10570) 1 an în urmă
prompts 37c746d687 llama : add Qwen support (#4281) 2 ani în urmă
requirements 2b131621e6 gguf-py : add support for sub_type (in arrays) in GGUFWriter add_key_value method (#13561) 7 luni în urmă
scripts f3a4b1659c sync : ggml 7 luni în urmă
src 91a8ee6a6f add geglu activation function (#14074) 7 luni în urmă
tests 0d3984424f ggml-vulkan: adds support for op CONV_TRANSPOSE_1D (#13813) 7 luni în urmă
tools dc0623fddb webui: fix sidebar being covered by main content (#14082) 7 luni în urmă
vendor 53f925074d sync : vendor (#13901) 7 luni în urmă
.clang-format fab5d30ff6 llama : add .clang-format file (#10415) 1 an în urmă
.clang-tidy 572b3141d3 clang-tidy : disable warning about missing math parenthesis (#13091) 8 luni în urmă
.dockerignore ea9c32be71 ci : fix docker build number and tag name (#9638) 1 an în urmă
.ecrc ad76569f8e common : Update stb_image.h to latest version (#9161) 1 an în urmă
.editorconfig 53f925074d sync : vendor (#13901) 7 luni în urmă
.flake8 1d36b3670b llama : move end-user examples to tools directory (#13249) 8 luni în urmă
.gitignore 1d36b3670b llama : move end-user examples to tools directory (#13249) 8 luni în urmă
.gitmodules ae8de6d50a ggml : build backends as libraries (#10256) 1 an în urmă
.pre-commit-config.yaml a2ac89d6ef convert.py : add python logging instead of print() (#6511) 1 an în urmă
AUTHORS 0fd7ca7a21 authors : update (#12271) 10 luni în urmă
CMakeLists.txt 3a077146a4 llama : allow using mmap without PrefetchVirtualMemory, apply GGML_WIN_VER to llama.cpp sources (#14013) 7 luni în urmă
CMakePresets.json f4ed10b69c cmake : remove arm64 msvc presets (#13342) 8 luni în urmă
CODEOWNERS 1d36b3670b llama : move end-user examples to tools directory (#13249) 8 luni în urmă
CONTRIBUTING.md 70680c48e5 ggml : upgrade init_tensor API to return a ggml_status (#11854) 10 luni în urmă
LICENSE e11a8999b5 license : update copyright notice + add AUTHORS (#6405) 1 an în urmă
Makefile 4773d7a02f examples : remove infill (#13283) 8 luni în urmă
README.md d01d112abb readme : add badge (#13938) 7 luni în urmă
SECURITY.md 1d36b3670b llama : move end-user examples to tools directory (#13249) 8 luni în urmă
build-xcframework.sh 10d2af0eaa llama/ggml: add LLM training support (#10544) 8 luni în urmă
convert_hf_to_gguf.py 1caae7fc6c gguf-py : add add_classifier_output_labels method to writer (#14031) 7 luni în urmă
convert_hf_to_gguf_update.py 07e4351ce6 convert : allow partial update to the chkhsh pre-tokenizer list (#13847) 7 luni în urmă
convert_llama_ggml_to_gguf.py ee2984bdaf py : fix wrong input type for raw_dtype in ggml to gguf scripts (#8928) 1 an în urmă
convert_lora_to_gguf.py 2016f07bd1 convert : experimental support for `--mmproj` flag (#13023) 9 luni în urmă
flake.lock cce5a90075 flake.lock: Update (#10470) 1 an în urmă
flake.nix 68ff663a04 repo : update links to new url (#11886) 11 luni în urmă
mypy.ini b43ebde3b0 convert : partially revert PR #4818 (#5041) 2 ani în urmă
poetry.lock b0a46993df build(python): Package scripts with pip-0517 compliance 1 an în urmă
pyproject.toml a7366faa5b gguf-py : avoid requiring pyside6 for other scripts (#13036) 8 luni în urmă
pyrightconfig.json 1d36b3670b llama : move end-user examples to tools directory (#13249) 8 luni în urmă
requirements.txt 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă

README.md

llama.cpp

llama

Release Server

Roadmap / Project status / Manifesto / ggml

Inference of Meta's LLaMA model (and others) in pure C/C++

Recent API changes

Hot topics


Quick start

Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:

Once installed, you'll need a model to work with. Head to the Obtaining and quantizing models section to learn more.

Example command:

# Use a local model file
llama-cli -m my_model.gguf

# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF

Description

The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide range of hardware - locally and in the cloud.

  • Plain C/C++ implementation without any dependencies
  • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2, AVX512 and AMX support for x86 architectures
  • 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
  • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
  • Vulkan and SYCL backend support
  • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

The llama.cpp project is the main playground for developing new features for the ggml library.

Models Typically finetunes of the base models below are supported as well. Instructions for adding support for new models: [HOWTO-add-model.md](docs/development/HOWTO-add-model.md) #### Text-only - [X] LLaMA 🦙 - [x] LLaMA 2 🦙🦙 - [x] LLaMA 3 🦙🦙🦙 - [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral) - [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct) - [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon) - [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) - [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne) - [X] [BERT](https://github.com/ggml-org/llama.cpp/pull/5423) - [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/) - [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft) - [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila) - [X] [Starcoder models](https://github.com/ggml-org/llama.cpp/pull/3187) - [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) - [X] [MPT](https://github.com/ggml-org/llama.cpp/pull/3417) - [X] [Bloom](https://github.com/ggml-org/llama.cpp/pull/3553) - [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi) - [X] [StableLM models](https://huggingface.co/stabilityai) - [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek) - [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen) - [x] [PLaMo-13B](https://github.com/ggml-org/llama.cpp/pull/3557) - [x] [Phi models](https://huggingface.co/models?search=microsoft/phi) - [x] [PhiMoE](https://github.com/ggml-org/llama.cpp/pull/11003) - [x] [GPT-2](https://huggingface.co/gpt2) - [x] [Orion 14B](https://github.com/ggml-org/llama.cpp/pull/5118) - [x] [InternLM2](https://huggingface.co/models?search=internlm2) - [x] [CodeShell](https://github.com/WisdomShell/codeshell) - [x] [Gemma](https://ai.google.dev/gemma) - [x] [Mamba](https://github.com/state-spaces/mamba) - [x] [Grok-1](https://huggingface.co/keyfan/grok-1-hf) - [x] [Xverse](https://huggingface.co/models?search=xverse) - [x] [Command-R models](https://huggingface.co/models?search=CohereForAI/c4ai-command-r) - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) - [x] [OLMo](https://allenai.org/olmo) - [x] [OLMo 2](https://allenai.org/olmo) - [x] [OLMoE](https://huggingface.co/allenai/OLMoE-1B-7B-0924) - [x] [Granite models](https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec3) - [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia) - [x] [Snowflake-Arctic MoE](https://huggingface.co/collections/Snowflake/arctic-66290090ab) - [x] [Smaug](https://huggingface.co/models?search=Smaug) - [x] [Poro 34B](https://huggingface.co/LumiOpen/Poro-34B) - [x] [Bitnet b1.58 models](https://huggingface.co/1bitLLM) - [x] [Flan T5](https://huggingface.co/models?search=flan-t5) - [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d) - [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat) - [x] [GLM-4-0414](https://huggingface.co/collections/THUDM/glm-4-0414-67f3cbcb34) - [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad) - [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) - [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a58032) - [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat) - [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238) - [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM) - [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1) - [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct) - [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview) - [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b3) #### Multimodal - [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d9), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155) - [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava) - [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5) - [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V) - [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM) - [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL) - [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM) - [x] [Moondream](https://huggingface.co/vikhyatk/moondream2) - [x] [Bunny](https://github.com/BAAI-DCAI/Bunny) - [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge) - [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee74555)
Bindings - Python: [ddh0/easy-llama](https://github.com/ddh0/easy-llama) - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) - Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp) - JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp) - JS/TS (Programmable Prompt Engine CLI): [offline-ai/cli](https://github.com/offline-ai/cli) - JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm) - Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama) - Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb) - Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs) - Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp) - Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs) - Rust (automated build from crates.io): [ShelbyJenkins/llm_client](https://github.com/ShelbyJenkins/llm_client) - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) - C#/VB.NET (more features - community license): [LM-Kit.NET](https://docs.lm-kit.com/lm-kit-net/index.html) - Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s) - Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj) - React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn) - Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp) - Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig) - Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart) - Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama) - PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggml-org/llama.cpp/pull/6326) - Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp) - Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift) - Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama) - Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
UIs *(to have a project listed here, it should clearly state that it depends on `llama.cpp`)* - [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT) - [cztomsik/ava](https://github.com/cztomsik/ava) (MIT) - [Dot](https://github.com/alexpinel/Dot) (GPL) - [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT) - [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0) - [janhq/jan](https://github.com/janhq/jan) (AGPL) - [johnbean393/Sidekick](https://github.com/johnbean393/Sidekick) (MIT) - [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0) - [KodiBot](https://github.com/firatkiral/kodibot) (GPL) - [llama.vim](https://github.com/ggml-org/llama.vim) (MIT) - [LARS](https://github.com/abgulati/LARS) (AGPL) - [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL) - [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT) - [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT) - [LMStudio](https://lmstudio.ai/) (proprietary) - [LocalAI](https://github.com/mudler/LocalAI) (MIT) - [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL) - [MindMac](https://mindmac.app) (proprietary) - [MindWorkAI/AI-Studio](https://github.com/MindWorkAI/AI-Studio) (FSL-1.1-MIT) - [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT) - [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile) (Apache-2.0) - [nat/openplayground](https://github.com/nat/openplayground) (MIT) - [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) (MIT) - [ollama/ollama](https://github.com/ollama/ollama) (MIT) - [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL) - [PocketPal AI](https://github.com/a-ghorbani/pocketpal-ai) (MIT) - [psugihara/FreeChat](https://github.com/psugihara/FreeChat) (MIT) - [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal) (MIT) - [pythops/tenere](https://github.com/pythops/tenere) (AGPL) - [ramalama](https://github.com/containers/ramalama) (MIT) - [semperai/amica](https://github.com/semperai/amica) (MIT) - [withcatai/catai](https://github.com/withcatai/catai) (MIT) - [Autopen](https://github.com/blackhole89/autopen) (GPL)
Tools - [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML - [akx/ollama-dl](https://github.com/akx/ollama-dl) – download models from the Ollama library to be used directly with llama.cpp - [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption - [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage - [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
Infrastructure - [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp - [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs - [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly - [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server - [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale - [llmaz](https://github.com/InftyAI/llmaz) - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
Games - [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.

Supported backends

Backend Target devices
Metal Apple Silicon
BLAS All
BLIS All
SYCL Intel and Nvidia GPU
MUSA Moore Threads GPU
CUDA Nvidia GPU
HIP AMD GPU
Vulkan GPU
CANN Ascend NPU
OpenCL Adreno GPU
RPC All

Obtaining and quantizing models

The Hugging Face platform hosts a number of LLMs compatible with llama.cpp:

You can either manually download the GGUF file or directly use any llama.cpp-compatible models from Hugging Face or other model hosting sites, such as ModelScope, by using this CLI argument: -hf <user>/<model>[:quant]. For example:

llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable MODEL_ENDPOINT. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. MODEL_ENDPOINT=https://www.modelscope.cn/.

After downloading a model, use the CLI tools to run it locally - see below.

llama.cpp requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py Python scripts in this repo.

The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp:

To learn more about model quantization, read this documentation

llama-cli

A CLI tool for accessing and experimenting with most of llama.cpp's functionality.

  • Run in conversation mode Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding `-cnv` and specifying a suitable chat template with `--chat-template NAME` ```bash llama-cli -m model.gguf # > hi, who are you? # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today? # # > what is 1+1? # Easy peasy! The answer to 1+1 is... 2! ```
  • Run in conversation mode with custom chat template ```bash # use the "chatml" template (use -h to see the list of supported templates) llama-cli -m model.gguf -cnv --chat-template chatml # use a custom template llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:' ```
  • Run simple text completion To disable conversation mode explicitly, use `-no-cnv` ```bash llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv # I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey. ```
  • Constrain the output with a custom grammar ```bash llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:' # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"} ``` The [grammars/](grammars/) folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](grammars/README.md). For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/

llama-server

A lightweight, OpenAI API compatible, HTTP server for serving LLMs.

  • Start a local HTTP server with default configuration on port 8080 ```bash llama-server -m model.gguf --port 8080 # Basic web UI can be accessed via browser: http://localhost:8080 # Chat completion endpoint: http://localhost:8080/v1/chat/completions ```
  • Support multiple-users and parallel decoding ```bash # up to 4 concurrent requests, each with 4096 max context llama-server -m model.gguf -c 16384 -np 4 ```
  • Enable speculative decoding ```bash # the draft.gguf model should be a small variant of the target model.gguf llama-server -m model.gguf -md draft.gguf ```
  • Serve an embedding model ```bash # use the /embedding endpoint llama-server -m model.gguf --embedding --pooling cls -ub 8192 ```
  • Serve a reranking model ```bash # use the /reranking endpoint llama-server -m model.gguf --reranking ```
  • Constrain all outputs with a grammar ```bash # custom grammar llama-server -m model.gguf --grammar-file grammar.gbnf # JSON llama-server -m model.gguf --grammar-file grammars/json.gbnf ```

llama-perplexity

A tool for measuring the perplexity ^1^2 of a model over a given text.

  • Measure the perplexity over a text file ```bash llama-perplexity -m model.gguf -f file.txt # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ... # Final estimate: PPL = 5.4007 +/- 0.67339 ```
  • Measure KL divergence ```bash # TODO ```

llama-bench

Benchmark the performance of the inference for various parameters.

  • Run default benchmark ```bash llama-bench -m model.gguf # Output: # | model | size | params | backend | threads | test | t/s | # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | pp512 | 5765.41 ± 20.55 | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | tg128 | 197.71 ± 0.81 | # # build: 3e0ba0e60 (4229) ```

llama-run

A comprehensive example for running llama.cpp models. Useful for inferencing. Used with RamaLama ^3.

  • Run a model with a specific prompt (by default it's pulled from Ollama registry) ```bash llama-run granite-code ```

llama-simple

A minimal example for implementing apps with llama.cpp. Useful for developers.

  • Basic text completion ```bash llama-simple -m model.gguf # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of ```

Contributing

  • Contributors can open PRs
  • Collaborators can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Collaborators will be invited based on contributions
  • Any help with managing issues, PRs and projects is very appreciated!
  • See good first issues for tasks suitable for first contributions
  • Read the CONTRIBUTING.md for more information
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Other documentation

Development documentation

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

XCFramework

The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS, and macOS. It can be used in Swift projects without the need to compile the library from source. For example:

// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.

import PackageDescription

let package = Package(
    name: "MyLlamaPackage",
    targets: [
        .executableTarget(
            name: "MyLlamaPackage",
            dependencies: [
                "LlamaFramework"
            ]),
        .binaryTarget(
            name: "LlamaFramework",
            url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
            checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
        )
    ]
)

The above example is using an intermediate build b5046 of the library. This can be modified to use a different version by changing the URL and checksum.

Completions

Command-line completion is available for some environments.

Bash Completion

$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash

Optionally this can be added to your .bashrc or .bash_profile to load it automatically. For example:

$ echo "source ~/.llama-completion.bash" >> ~/.bashrc

Dependencies

  • yhirose/cpp-httplib - Single-header HTTP server, used by llama-server - MIT license
  • stb-image - Single-header image format decoder, used by multimodal subsystem - Public domain
  • nlohmann/json - Single-header JSON library, used by various tools/examples - MIT License
  • minja - Minimal Jinja parser in C++, used by various tools/examples - MIT License
  • linenoise.cpp - C++ library that provides readline-like line editing capabilities, used by llama-run - BSD 2-Clause License
  • curl - Client-side URL transfer library, used by various tools/examples - CURL License
  • miniaudio.h - Single-header audio format decoder, used by multimodal subsystem - Public domain