| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245 |
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <chrono>
- #include <cinttypes>
- #include <clocale>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <iterator>
- #include <map>
- #include <numeric>
- #include <regex>
- #include <sstream>
- #include <string>
- #include <vector>
- #include "ggml.h"
- #include "llama.h"
- #include "common.h"
- #include "ggml-cuda.h"
- #include "ggml-sycl.h"
- // utils
- static uint64_t get_time_ns() {
- using clock = std::chrono::high_resolution_clock;
- return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
- }
- template<class T>
- static std::string join(const std::vector<T> & values, const std::string & delim) {
- std::ostringstream str;
- for (size_t i = 0; i < values.size(); i++) {
- str << values[i];
- if (i < values.size() - 1) {
- str << delim;
- }
- }
- return str.str();
- }
- template<class T>
- static std::vector<T> split(const std::string & str, char delim) {
- std::vector<T> values;
- std::istringstream str_stream(str);
- std::string token;
- while (std::getline(str_stream, token, delim)) {
- T value;
- std::istringstream token_stream(token);
- token_stream >> value;
- values.push_back(value);
- }
- return values;
- }
- template<typename T, typename F>
- static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
- std::vector<std::string> str_values;
- std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
- return str_values;
- }
- template<typename T>
- static T avg(const std::vector<T> & v) {
- if (v.empty()) {
- return 0;
- }
- T sum = std::accumulate(v.begin(), v.end(), T(0));
- return sum / (T)v.size();
- }
- template<typename T>
- static T stdev(const std::vector<T> & v) {
- if (v.size() <= 1) {
- return 0;
- }
- T mean = avg(v);
- T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
- T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
- return stdev;
- }
- static std::string get_cpu_info() {
- std::string id;
- #ifdef __linux__
- FILE * f = fopen("/proc/cpuinfo", "r");
- if (f) {
- char buf[1024];
- while (fgets(buf, sizeof(buf), f)) {
- if (strncmp(buf, "model name", 10) == 0) {
- char * p = strchr(buf, ':');
- if (p) {
- p++;
- while (std::isspace(*p)) {
- p++;
- }
- while (std::isspace(p[strlen(p) - 1])) {
- p[strlen(p) - 1] = '\0';
- }
- id = p;
- break;
- }
- }
- }
- }
- #endif
- // TODO: other platforms
- return id;
- }
- static std::string get_gpu_info() {
- std::string id;
- #ifdef GGML_USE_CUBLAS
- int count = ggml_cuda_get_device_count();
- for (int i = 0; i < count; i++) {
- char buf[128];
- ggml_cuda_get_device_description(i, buf, sizeof(buf));
- id += buf;
- if (i < count - 1) {
- id += "/";
- }
- }
- #endif
- #ifdef GGML_USE_SYCL
- int device_list[GGML_SYCL_MAX_DEVICES];
- ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
- for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
- if (device_list[i] >0 ){
- char buf[128];
- ggml_sycl_get_device_description(i, buf, sizeof(buf));
- id += buf;
- id += "/";
- }
- }
- if (id.length() >2 ) {
- id.pop_back();
- }
- #endif
- // TODO: other backends
- return id;
- }
- // command line params
- enum output_formats {CSV, JSON, MARKDOWN, SQL};
- static const char * output_format_str(output_formats format) {
- switch (format) {
- case CSV: return "csv";
- case JSON: return "json";
- case MARKDOWN: return "md";
- case SQL: return "sql";
- default: GGML_ASSERT(!"invalid output format");
- }
- }
- static const char * split_mode_str(llama_split_mode mode) {
- switch (mode) {
- case LLAMA_SPLIT_NONE: return "none";
- case LLAMA_SPLIT_LAYER: return "layer";
- case LLAMA_SPLIT_ROW: return "row";
- default: GGML_ASSERT(!"invalid split mode");
- }
- }
- struct cmd_params {
- std::vector<std::string> model;
- std::vector<int> n_prompt;
- std::vector<int> n_gen;
- std::vector<int> n_batch;
- std::vector<ggml_type> type_k;
- std::vector<ggml_type> type_v;
- std::vector<int> n_threads;
- std::vector<int> n_gpu_layers;
- std::vector<llama_split_mode> split_mode;
- std::vector<int> main_gpu;
- std::vector<bool> no_kv_offload;
- std::vector<bool> mul_mat_q;
- std::vector<std::vector<float>> tensor_split;
- std::vector<bool> use_mmap;
- int reps;
- bool verbose;
- output_formats output_format;
- };
- static const cmd_params cmd_params_defaults = {
- /* model */ {"models/7B/ggml-model-q4_0.gguf"},
- /* n_prompt */ {512},
- /* n_gen */ {128},
- /* n_batch */ {512},
- /* type_k */ {GGML_TYPE_F16},
- /* type_v */ {GGML_TYPE_F16},
- /* n_threads */ {get_num_physical_cores()},
- /* n_gpu_layers */ {99},
- /* split_mode */ {LLAMA_SPLIT_LAYER},
- /* main_gpu */ {0},
- /* no_kv_offload */ {false},
- /* mul_mat_q */ {true},
- /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
- /* use_mmap */ {true},
- /* reps */ 5,
- /* verbose */ false,
- /* output_format */ MARKDOWN
- };
- static void print_usage(int /* argc */, char ** argv) {
- printf("usage: %s [options]\n", argv[0]);
- printf("\n");
- printf("options:\n");
- printf(" -h, --help\n");
- printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
- printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
- printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
- printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
- printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
- printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
- printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
- printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
- printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
- printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
- printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
- printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
- printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
- printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
- printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
- printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
- printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
- printf("\n");
- printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
- }
- static ggml_type ggml_type_from_name(const std::string & s) {
- if (s == "f16") {
- return GGML_TYPE_F16;
- }
- if (s == "q8_0") {
- return GGML_TYPE_Q8_0;
- }
- if (s == "q4_0") {
- return GGML_TYPE_Q4_0;
- }
- if (s == "q4_1") {
- return GGML_TYPE_Q4_1;
- }
- if (s == "q5_0") {
- return GGML_TYPE_Q5_0;
- }
- if (s == "q5_1") {
- return GGML_TYPE_Q5_1;
- }
- return GGML_TYPE_COUNT;
- }
- static cmd_params parse_cmd_params(int argc, char ** argv) {
- cmd_params params;
- std::string arg;
- bool invalid_param = false;
- const std::string arg_prefix = "--";
- const char split_delim = ',';
- params.verbose = cmd_params_defaults.verbose;
- params.output_format = cmd_params_defaults.output_format;
- params.reps = cmd_params_defaults.reps;
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg == "-h" || arg == "--help") {
- print_usage(argc, argv);
- exit(0);
- } else if (arg == "-m" || arg == "--model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<std::string>(argv[i], split_delim);
- params.model.insert(params.model.end(), p.begin(), p.end());
- } else if (arg == "-p" || arg == "--n-prompt") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
- } else if (arg == "-n" || arg == "--n-gen") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
- } else if (arg == "-b" || arg == "--batch-size") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
- } else if (arg == "-ctk" || arg == "--cache-type-k") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<std::string>(argv[i], split_delim);
- std::vector<ggml_type> types;
- for (const auto & t : p) {
- ggml_type gt = ggml_type_from_name(t);
- if (gt == GGML_TYPE_COUNT) {
- invalid_param = true;
- break;
- }
- types.push_back(gt);
- }
- params.type_k.insert(params.type_k.end(), types.begin(), types.end());
- } else if (arg == "-ctv" || arg == "--cache-type-v") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<std::string>(argv[i], split_delim);
- std::vector<ggml_type> types;
- for (const auto & t : p) {
- ggml_type gt = ggml_type_from_name(t);
- if (gt == GGML_TYPE_COUNT) {
- invalid_param = true;
- break;
- }
- types.push_back(gt);
- }
- params.type_v.insert(params.type_v.end(), types.begin(), types.end());
- } else if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
- } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
- } else if (arg == "-sm" || arg == "--split-mode") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<std::string>(argv[i], split_delim);
- std::vector<llama_split_mode> modes;
- for (const auto & m : p) {
- llama_split_mode mode;
- if (m == "none") {
- mode = LLAMA_SPLIT_NONE;
- } else if (m == "layer") {
- mode = LLAMA_SPLIT_LAYER;
- } else if (m == "row") {
- mode = LLAMA_SPLIT_ROW;
- } else {
- invalid_param = true;
- break;
- }
- modes.push_back(mode);
- }
- params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
- } else if (arg == "-mg" || arg == "--main-gpu") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.main_gpu = split<int>(argv[i], split_delim);
- } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<bool>(argv[i], split_delim);
- params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
- } else if (arg == "-mmq" || arg == "--mul-mat-q") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<bool>(argv[i], split_delim);
- params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
- } else if (arg == "-mmp" || arg == "--mmap") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<bool>(argv[i], split_delim);
- params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
- } else if (arg == "-ts" || arg == "--tensor-split") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- for (auto ts : split<std::string>(argv[i], split_delim)) {
- // split string by ; and /
- const std::regex regex{R"([;/]+)"};
- std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
- std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= llama_max_devices());
- std::vector<float> tensor_split(llama_max_devices());
- for (size_t i = 0; i < llama_max_devices(); ++i) {
- if (i < split_arg.size()) {
- tensor_split[i] = std::stof(split_arg[i]);
- } else {
- tensor_split[i] = 0.0f;
- }
- }
- params.tensor_split.push_back(tensor_split);
- }
- } else if (arg == "-r" || arg == "--repetitions") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.reps = std::stoi(argv[i]);
- } else if (arg == "-o" || arg == "--output") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- if (argv[i] == std::string("csv")) {
- params.output_format = CSV;
- } else if (argv[i] == std::string("json")) {
- params.output_format = JSON;
- } else if (argv[i] == std::string("md")) {
- params.output_format = MARKDOWN;
- } else if (argv[i] == std::string("sql")) {
- params.output_format = SQL;
- } else {
- invalid_param = true;
- break;
- }
- } else if (arg == "-v" || arg == "--verbose") {
- params.verbose = true;
- } else {
- invalid_param = true;
- break;
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- print_usage(argc, argv);
- exit(1);
- }
- // set defaults
- if (params.model.empty()) { params.model = cmd_params_defaults.model; }
- if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
- if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
- if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
- if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
- if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
- if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
- if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
- if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
- if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
- if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
- if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
- if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
- if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
- return params;
- }
- struct cmd_params_instance {
- std::string model;
- int n_prompt;
- int n_gen;
- int n_batch;
- ggml_type type_k;
- ggml_type type_v;
- int n_threads;
- int n_gpu_layers;
- llama_split_mode split_mode;
- int main_gpu;
- bool no_kv_offload;
- bool mul_mat_q;
- std::vector<float> tensor_split;
- bool use_mmap;
- llama_model_params to_llama_mparams() const {
- llama_model_params mparams = llama_model_default_params();
- mparams.n_gpu_layers = n_gpu_layers;
- mparams.split_mode = split_mode;
- mparams.main_gpu = main_gpu;
- mparams.tensor_split = tensor_split.data();
- mparams.use_mmap = use_mmap;
- return mparams;
- }
- bool equal_mparams(const cmd_params_instance & other) const {
- return model == other.model &&
- n_gpu_layers == other.n_gpu_layers &&
- split_mode == other.split_mode &&
- main_gpu == other.main_gpu &&
- use_mmap == other.use_mmap &&
- tensor_split == other.tensor_split;
- }
- llama_context_params to_llama_cparams() const {
- llama_context_params cparams = llama_context_default_params();
- cparams.n_ctx = n_prompt + n_gen;
- cparams.n_batch = n_batch;
- cparams.type_k = type_k;
- cparams.type_v = type_v;
- cparams.mul_mat_q = mul_mat_q;
- cparams.offload_kqv = !no_kv_offload;
- return cparams;
- }
- };
- static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
- std::vector<cmd_params_instance> instances;
- // this ordering minimizes the number of times that each model needs to be reloaded
- for (const auto & m : params.model)
- for (const auto & nl : params.n_gpu_layers)
- for (const auto & sm : params.split_mode)
- for (const auto & mg : params.main_gpu)
- for (const auto & ts : params.tensor_split)
- for (const auto & mmp : params.use_mmap)
- for (const auto & nb : params.n_batch)
- for (const auto & tk : params.type_k)
- for (const auto & tv : params.type_v)
- for (const auto & mmq : params.mul_mat_q)
- for (const auto & nkvo : params.no_kv_offload)
- for (const auto & nt : params.n_threads) {
- for (const auto & n_prompt : params.n_prompt) {
- if (n_prompt == 0) {
- continue;
- }
- cmd_params_instance instance = {
- /* .model = */ m,
- /* .n_prompt = */ n_prompt,
- /* .n_gen = */ 0,
- /* .n_batch = */ nb,
- /* .type_k = */ tk,
- /* .type_v = */ tv,
- /* .n_threads = */ nt,
- /* .n_gpu_layers = */ nl,
- /* .split_mode = */ sm,
- /* .main_gpu = */ mg,
- /* .no_kv_offload= */ nkvo,
- /* .mul_mat_q = */ mmq,
- /* .tensor_split = */ ts,
- /* .use_mmap = */ mmp,
- };
- instances.push_back(instance);
- }
- for (const auto & n_gen : params.n_gen) {
- if (n_gen == 0) {
- continue;
- }
- cmd_params_instance instance = {
- /* .model = */ m,
- /* .n_prompt = */ 0,
- /* .n_gen = */ n_gen,
- /* .n_batch = */ nb,
- /* .type_k = */ tk,
- /* .type_v = */ tv,
- /* .n_threads = */ nt,
- /* .n_gpu_layers = */ nl,
- /* .split_mode = */ sm,
- /* .main_gpu = */ mg,
- /* .no_kv_offload= */ nkvo,
- /* .mul_mat_q = */ mmq,
- /* .tensor_split = */ ts,
- /* .use_mmap = */ mmp,
- };
- instances.push_back(instance);
- }
- }
- return instances;
- }
- struct test {
- static const std::string build_commit;
- static const int build_number;
- static const bool cuda;
- static const bool opencl;
- static const bool vulkan;
- static const bool kompute;
- static const bool metal;
- static const bool sycl;
- static const bool gpu_blas;
- static const bool blas;
- static const std::string cpu_info;
- static const std::string gpu_info;
- std::string model_filename;
- std::string model_type;
- uint64_t model_size;
- uint64_t model_n_params;
- int n_batch;
- int n_threads;
- ggml_type type_k;
- ggml_type type_v;
- int n_gpu_layers;
- llama_split_mode split_mode;
- int main_gpu;
- bool no_kv_offload;
- bool mul_mat_q;
- std::vector<float> tensor_split;
- bool use_mmap;
- int n_prompt;
- int n_gen;
- std::string test_time;
- std::vector<uint64_t> samples_ns;
- test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
- model_filename = inst.model;
- char buf[128];
- llama_model_desc(lmodel, buf, sizeof(buf));
- model_type = buf;
- model_size = llama_model_size(lmodel);
- model_n_params = llama_model_n_params(lmodel);
- n_batch = inst.n_batch;
- n_threads = inst.n_threads;
- type_k = inst.type_k;
- type_v = inst.type_v;
- n_gpu_layers = inst.n_gpu_layers;
- split_mode = inst.split_mode;
- main_gpu = inst.main_gpu;
- no_kv_offload = inst.no_kv_offload;
- mul_mat_q = inst.mul_mat_q;
- tensor_split = inst.tensor_split;
- use_mmap = inst.use_mmap;
- n_prompt = inst.n_prompt;
- n_gen = inst.n_gen;
- // RFC 3339 date-time format
- time_t t = time(NULL);
- std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
- test_time = buf;
- (void) ctx;
- }
- uint64_t avg_ns() const {
- return ::avg(samples_ns);
- }
- uint64_t stdev_ns() const {
- return ::stdev(samples_ns);
- }
- std::vector<double> get_ts() const {
- int n_tokens = n_prompt + n_gen;
- std::vector<double> ts;
- std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
- return ts;
- }
- double avg_ts() const {
- return ::avg(get_ts());
- }
- double stdev_ts() const {
- return ::stdev(get_ts());
- }
- static std::string get_backend() {
- if (cuda) {
- return GGML_CUDA_NAME;
- }
- if (opencl) {
- return "OpenCL";
- }
- if (vulkan) {
- return "Vulkan";
- }
- if (kompute) {
- return "Kompute";
- }
- if (metal) {
- return "Metal";
- }
- if (sycl) {
- return GGML_SYCL_NAME;
- }
- if (gpu_blas) {
- return "GPU BLAS";
- }
- if (blas) {
- return "BLAS";
- }
- return "CPU";
- }
- static const std::vector<std::string> & get_fields() {
- static const std::vector<std::string> fields = {
- "build_commit", "build_number",
- "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
- "cpu_info", "gpu_info",
- "model_filename", "model_type", "model_size", "model_n_params",
- "n_batch", "n_threads", "type_k", "type_v",
- "n_gpu_layers", "split_mode",
- "main_gpu", "no_kv_offload",
- "mul_mat_q", "tensor_split", "use_mmap",
- "n_prompt", "n_gen", "test_time",
- "avg_ns", "stddev_ns",
- "avg_ts", "stddev_ts"
- };
- return fields;
- }
- enum field_type {STRING, BOOL, INT, FLOAT};
- static field_type get_field_type(const std::string & field) {
- if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
- field == "model_size" || field == "model_n_params" ||
- field == "n_gpu_layers" || field == "main_gpu" ||
- field == "n_prompt" || field == "n_gen" ||
- field == "avg_ns" || field == "stddev_ns") {
- return INT;
- }
- if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
- field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
- field == "mul_mat_q" || field == "use_mmap") {
- return BOOL;
- }
- if (field == "avg_ts" || field == "stddev_ts") {
- return FLOAT;
- }
- return STRING;
- }
- std::vector<std::string> get_values() const {
- std::string tensor_split_str;
- int max_nonzero = 0;
- for (size_t i = 0; i < llama_max_devices(); i++) {
- if (tensor_split[i] > 0) {
- max_nonzero = i;
- }
- }
- for (int i = 0; i <= max_nonzero; i++) {
- char buf[32];
- snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
- tensor_split_str += buf;
- if (i < max_nonzero) {
- tensor_split_str += "/";
- }
- }
- std::vector<std::string> values = {
- build_commit, std::to_string(build_number),
- std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
- std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
- cpu_info, gpu_info,
- model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
- std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
- std::to_string(n_gpu_layers), split_mode_str(split_mode),
- std::to_string(main_gpu), std::to_string(no_kv_offload),
- std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
- std::to_string(n_prompt), std::to_string(n_gen), test_time,
- std::to_string(avg_ns()), std::to_string(stdev_ns()),
- std::to_string(avg_ts()), std::to_string(stdev_ts())
- };
- return values;
- }
- std::map<std::string, std::string> get_map() const {
- std::map<std::string, std::string> map;
- auto fields = get_fields();
- auto values = get_values();
- std::transform(fields.begin(), fields.end(), values.begin(),
- std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
- return map;
- }
- };
- const std::string test::build_commit = LLAMA_COMMIT;
- const int test::build_number = LLAMA_BUILD_NUMBER;
- const bool test::cuda = !!ggml_cpu_has_cublas();
- const bool test::opencl = !!ggml_cpu_has_clblast();
- const bool test::vulkan = !!ggml_cpu_has_vulkan();
- const bool test::kompute = !!ggml_cpu_has_kompute();
- const bool test::metal = !!ggml_cpu_has_metal();
- const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
- const bool test::blas = !!ggml_cpu_has_blas();
- const bool test::sycl = !!ggml_cpu_has_sycl();
- const std::string test::cpu_info = get_cpu_info();
- const std::string test::gpu_info = get_gpu_info();
- struct printer {
- virtual ~printer() {}
- FILE * fout;
- virtual void print_header(const cmd_params & params) { (void) params; }
- virtual void print_test(const test & t) = 0;
- virtual void print_footer() { }
- };
- struct csv_printer : public printer {
- static std::string escape_csv(const std::string & field) {
- std::string escaped = "\"";
- for (auto c : field) {
- if (c == '"') {
- escaped += "\"";
- }
- escaped += c;
- }
- escaped += "\"";
- return escaped;
- }
- void print_header(const cmd_params & params) override {
- std::vector<std::string> fields = test::get_fields();
- fprintf(fout, "%s\n", join(fields, ",").c_str());
- (void) params;
- }
- void print_test(const test & t) override {
- std::vector<std::string> values = t.get_values();
- std::transform(values.begin(), values.end(), values.begin(), escape_csv);
- fprintf(fout, "%s\n", join(values, ",").c_str());
- }
- };
- struct json_printer : public printer {
- bool first = true;
- static std::string escape_json(const std::string & value) {
- std::string escaped;
- for (auto c : value) {
- if (c == '"') {
- escaped += "\\\"";
- } else if (c == '\\') {
- escaped += "\\\\";
- } else if (c <= 0x1f) {
- char buf[8];
- snprintf(buf, sizeof(buf), "\\u%04x", c);
- escaped += buf;
- } else {
- escaped += c;
- }
- }
- return escaped;
- }
- static std::string format_value(const std::string & field, const std::string & value) {
- switch (test::get_field_type(field)) {
- case test::STRING:
- return "\"" + escape_json(value) + "\"";
- case test::BOOL:
- return value == "0" ? "false" : "true";
- default:
- return value;
- }
- }
- void print_header(const cmd_params & params) override {
- fprintf(fout, "[\n");
- (void) params;
- }
- void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
- assert(fields.size() == values.size());
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
- }
- }
- void print_test(const test & t) override {
- if (first) {
- first = false;
- } else {
- fprintf(fout, ",\n");
- }
- fprintf(fout, " {\n");
- print_fields(test::get_fields(), t.get_values());
- fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
- fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
- fprintf(fout, " }");
- fflush(fout);
- }
- void print_footer() override {
- fprintf(fout, "\n]\n");
- }
- };
- struct markdown_printer : public printer {
- std::vector<std::string> fields;
- static int get_field_width(const std::string & field) {
- if (field == "model") {
- return -30;
- }
- if (field == "t/s") {
- return 16;
- }
- if (field == "size" || field == "params") {
- return 10;
- }
- if (field == "n_gpu_layers") {
- return 3;
- }
- int width = std::max((int)field.length(), 10);
- if (test::get_field_type(field) == test::STRING) {
- return -width;
- }
- return width;
- }
- static std::string get_field_display_name(const std::string & field) {
- if (field == "n_gpu_layers") {
- return "ngl";
- }
- if (field == "split_mode") {
- return "sm";
- }
- if (field == "n_threads") {
- return "threads";
- }
- if (field == "mul_mat_q") {
- return "mmq";
- }
- if (field == "no_kv_offload") {
- return "nkvo";
- }
- if (field == "use_mmap") {
- return "mmap";
- }
- if (field == "tensor_split") {
- return "ts";
- }
- return field;
- }
- void print_header(const cmd_params & params) override {
- // select fields to print
- fields.emplace_back("model");
- fields.emplace_back("size");
- fields.emplace_back("params");
- fields.emplace_back("backend");
- bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
- if (!is_cpu_backend) {
- fields.emplace_back("n_gpu_layers");
- }
- if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
- fields.emplace_back("n_threads");
- }
- if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
- fields.emplace_back("n_batch");
- }
- if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
- fields.emplace_back("type_k");
- }
- if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
- fields.emplace_back("type_v");
- }
- if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
- fields.emplace_back("main_gpu");
- }
- if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
- fields.emplace_back("split_mode");
- }
- if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
- fields.emplace_back("mul_mat_q");
- }
- if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
- fields.emplace_back("no_kv_offload");
- }
- if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
- fields.emplace_back("tensor_split");
- }
- if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
- fields.emplace_back("use_mmap");
- }
- fields.emplace_back("test");
- fields.emplace_back("t/s");
- fprintf(fout, "|");
- for (const auto & field : fields) {
- fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
- }
- fprintf(fout, "\n");
- fprintf(fout, "|");
- for (const auto & field : fields) {
- int width = get_field_width(field);
- fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
- }
- fprintf(fout, "\n");
- }
- void print_test(const test & t) override {
- std::map<std::string, std::string> vmap = t.get_map();
- fprintf(fout, "|");
- for (const auto & field : fields) {
- std::string value;
- char buf[128];
- if (field == "model") {
- value = t.model_type;
- } else if (field == "size") {
- if (t.model_size < 1024*1024*1024) {
- snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
- } else {
- snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
- }
- value = buf;
- } else if (field == "params") {
- if (t.model_n_params < 1000*1000*1000) {
- snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
- } else {
- snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
- }
- value = buf;
- } else if (field == "backend") {
- value = test::get_backend();
- } else if (field == "test") {
- if (t.n_prompt > 0 && t.n_gen == 0) {
- snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
- } else if (t.n_gen > 0 && t.n_prompt == 0) {
- snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
- } else {
- assert(false);
- exit(1);
- }
- value = buf;
- } else if (field == "t/s") {
- snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
- value = buf;
- } else if (vmap.find(field) != vmap.end()) {
- value = vmap.at(field);
- } else {
- assert(false);
- exit(1);
- }
- int width = get_field_width(field);
- if (field == "t/s") {
- // HACK: the utf-8 character is 2 bytes
- width += 1;
- }
- fprintf(fout, " %*s |", width, value.c_str());
- }
- fprintf(fout, "\n");
- }
- void print_footer() override {
- fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
- }
- };
- struct sql_printer : public printer {
- static std::string get_sql_field_type(const std::string & field) {
- switch (test::get_field_type(field)) {
- case test::STRING:
- return "TEXT";
- case test::BOOL:
- case test::INT:
- return "INTEGER";
- case test::FLOAT:
- return "REAL";
- default:
- assert(false);
- exit(1);
- }
- }
- void print_header(const cmd_params & params) override {
- std::vector<std::string> fields = test::get_fields();
- fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
- }
- fprintf(fout, ");\n");
- fprintf(fout, "\n");
- (void) params;
- }
- void print_test(const test & t) override {
- fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
- fprintf(fout, "VALUES (");
- std::vector<std::string> values = t.get_values();
- for (size_t i = 0; i < values.size(); i++) {
- fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
- }
- fprintf(fout, ");\n");
- }
- };
- static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
- std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
- int n_processed = 0;
- llama_set_n_threads(ctx, n_threads, n_threads);
- while (n_processed < n_prompt) {
- int n_tokens = std::min(n_prompt - n_processed, n_batch);
- llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
- n_processed += n_tokens;
- }
- }
- static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
- llama_token token = llama_token_bos(llama_get_model(ctx));
- llama_set_n_threads(ctx, n_threads, n_threads);
- for (int i = 0; i < n_gen; i++) {
- llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
- }
- }
- static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
- (void) level;
- (void) text;
- (void) user_data;
- }
- int main(int argc, char ** argv) {
- // try to set locale for unicode characters in markdown
- setlocale(LC_CTYPE, ".UTF-8");
- #if !defined(NDEBUG)
- fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
- #endif
- #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
- fprintf(stderr, "warning: debug build, performance may be affected\n");
- #endif
- #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
- fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
- #endif
- cmd_params params = parse_cmd_params(argc, argv);
- // initialize llama.cpp
- if (!params.verbose) {
- llama_log_set(llama_null_log_callback, NULL);
- }
- llama_backend_init();
- // initialize printer
- std::unique_ptr<printer> p;
- switch (params.output_format) {
- case CSV:
- p.reset(new csv_printer());
- break;
- case JSON:
- p.reset(new json_printer());
- break;
- case MARKDOWN:
- p.reset(new markdown_printer());
- break;
- case SQL:
- p.reset(new sql_printer());
- break;
- default:
- assert(false);
- exit(1);
- }
- p->fout = stdout;
- p->print_header(params);
- std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
- llama_model * lmodel = nullptr;
- const cmd_params_instance * prev_inst = nullptr;
- for (const auto & inst : params_instances) {
- // keep the same model between tests when possible
- if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
- if (lmodel) {
- llama_free_model(lmodel);
- }
- lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
- if (lmodel == NULL) {
- fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
- return 1;
- }
- prev_inst = &inst;
- }
- llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
- if (ctx == NULL) {
- fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
- llama_free_model(lmodel);
- return 1;
- }
- test t(inst, lmodel, ctx);
- llama_kv_cache_clear(ctx);
- // warmup run
- if (t.n_prompt > 0) {
- test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
- }
- if (t.n_gen > 0) {
- test_gen(ctx, 1, 0, t.n_threads);
- }
- for (int i = 0; i < params.reps; i++) {
- llama_kv_cache_clear(ctx);
- uint64_t t_start = get_time_ns();
- if (t.n_prompt > 0) {
- test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
- }
- if (t.n_gen > 0) {
- test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
- }
- uint64_t t_ns = get_time_ns() - t_start;
- t.samples_ns.push_back(t_ns);
- }
- p->print_test(t);
- llama_print_timings(ctx);
- llama_free(ctx);
- }
- llama_free_model(lmodel);
- p->print_footer();
- llama_backend_free();
- return 0;
- }
|