Marcus Dunn 5be6c803fa llama : remove token functions with `context` args in favor of `model` (#3720) пре 2 година
..
CMakeLists.txt 438c2ca830 server : parallel decoding and multimodal (#3677) пре 2 година
README.md 370359e5ba examples: support LLaVA v1.5 (multimodal model) (#3436) пре 2 година
clip.cpp 438c2ca830 server : parallel decoding and multimodal (#3677) пре 2 година
clip.h 370359e5ba examples: support LLaVA v1.5 (multimodal model) (#3436) пре 2 година
convert-image-encoder-to-gguf.py 370359e5ba examples: support LLaVA v1.5 (multimodal model) (#3436) пре 2 година
llava-surgery.py f3b25e4043 multimodal : add BakLLaVA conversion support (#3682) пре 2 година
llava-utils.h 5be6c803fa llama : remove token functions with `context` args in favor of `model` (#3720) пре 2 година
llava.cpp 0e89203b51 speculative : add tree-based sampling example (#3624) пре 2 година

README.md

LLaVA

Currently this implementation supports llava-v1.5 variants.

The pre-converted 7b and 13b models are available.

After API is confirmed, more models will be supported / uploaded.

Usage

Build with cmake or run make llava to build it.

After building, run: ./llava to see the usage. For example:

./llava -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg

note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1 to the command to do so.

Model conversion

  • Clone llava-v15-7bandclip-vit-large-patch14-336`` locally:

    git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
    
    git clone https://huggingface.co/openai/clip-vit-large-patch14-336
    
  1. Use llava-surgery.py to split the LLaVA model to LLaMA and multimodel projector constituents:

    python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
    
  2. Use convert-image-encoder-to-gguf.py to convert the LLaVA image encoder to GGUF:

    python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
    
  3. Use convert.py to convert the LLaMA part of LLaVA to GGUF:

    python ./convert.py ../llava-v1.5-7b
    

Now both the LLaMA part and the image encoder is in the llava-v1.5-7b directory.

TODO

  • Support server mode.
  • Support non-CPU backend for the image encoding part.
  • Support different sampling methods.
  • Support more model variants.