ggml.h 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport) extern
  178. # else
  179. # define GGML_API __declspec(dllimport) extern
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default"))) extern
  183. # endif
  184. #else
  185. # define GGML_API extern
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__) && !defined(__clang__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdbool.h>
  203. #include <stddef.h>
  204. #include <stdint.h>
  205. #include <stdio.h>
  206. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  207. #define GGML_FILE_VERSION 2
  208. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  209. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  210. #define GGML_MAX_DIMS 4
  211. #define GGML_MAX_PARAMS 2048
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_N_THREADS 512
  214. #define GGML_MAX_OP_PARAMS 64
  215. #ifndef GGML_MAX_NAME
  216. # define GGML_MAX_NAME 64
  217. #endif
  218. #define GGML_DEFAULT_N_THREADS 4
  219. #define GGML_DEFAULT_GRAPH_SIZE 2048
  220. #if UINTPTR_MAX == 0xFFFFFFFF
  221. #define GGML_MEM_ALIGN 4
  222. #else
  223. #define GGML_MEM_ALIGN 16
  224. #endif
  225. #define GGML_EXIT_SUCCESS 0
  226. #define GGML_EXIT_ABORTED 1
  227. // TODO: convert to enum https://github.com/ggml-org/llama.cpp/pull/16187#discussion_r2388538726
  228. #define GGML_ROPE_TYPE_NORMAL 0
  229. #define GGML_ROPE_TYPE_NEOX 2
  230. #define GGML_ROPE_TYPE_MROPE 8
  231. #define GGML_ROPE_TYPE_VISION 24
  232. #define GGML_ROPE_TYPE_IMROPE 40 // binary: 101000
  233. #define GGML_MROPE_SECTIONS 4
  234. #define GGML_UNUSED(x) (void)(x)
  235. #ifdef __CUDACC__
  236. template<typename... Args>
  237. __host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
  238. #define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
  239. #else
  240. #define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
  241. #endif // __CUDACC__
  242. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  243. #ifndef NDEBUG
  244. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  245. #elif defined(__GNUC__)
  246. # define GGML_UNREACHABLE() __builtin_unreachable()
  247. #elif defined(_MSC_VER)
  248. # define GGML_UNREACHABLE() __assume(0)
  249. #else
  250. # define GGML_UNREACHABLE() ((void) 0)
  251. #endif
  252. #ifdef __cplusplus
  253. # define GGML_NORETURN [[noreturn]]
  254. #elif defined(_MSC_VER)
  255. # define GGML_NORETURN __declspec(noreturn)
  256. #else
  257. # define GGML_NORETURN _Noreturn
  258. #endif
  259. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  260. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  261. // used to copy the number of elements and stride in bytes of tensors into local variables.
  262. // main purpose is to reduce code duplication and improve readability.
  263. //
  264. // example:
  265. //
  266. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  267. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  268. //
  269. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  270. const type prefix##0 = (pointer) ? (pointer)->array[0] : 0; \
  271. GGML_UNUSED(prefix##0);
  272. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  273. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  274. const type prefix##1 = (pointer) ? (pointer)->array[1] : 0; \
  275. GGML_UNUSED(prefix##1);
  276. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  277. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  278. const type prefix##2 = (pointer) ? (pointer)->array[2] : 0; \
  279. GGML_UNUSED(prefix##2);
  280. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  281. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  282. const type prefix##3 = (pointer) ? (pointer)->array[3] : 0; \
  283. GGML_UNUSED(prefix##3);
  284. #define GGML_TENSOR_UNARY_OP_LOCALS \
  285. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  286. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  287. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  288. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  289. #define GGML_TENSOR_BINARY_OP_LOCALS \
  290. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  291. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  292. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  293. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  294. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  295. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  296. #define GGML_TENSOR_TERNARY_OP_LOCALS \
  297. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  298. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  299. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  300. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  301. GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
  302. GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
  303. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  304. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  305. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  306. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  307. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  308. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  309. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  310. #ifdef __cplusplus
  311. extern "C" {
  312. #endif
  313. // Function type used in fatal error callbacks
  314. typedef void (*ggml_abort_callback_t)(const char * error_message);
  315. // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
  316. // Returns the old callback for chaining
  317. GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
  318. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  319. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  320. enum ggml_status {
  321. GGML_STATUS_ALLOC_FAILED = -2,
  322. GGML_STATUS_FAILED = -1,
  323. GGML_STATUS_SUCCESS = 0,
  324. GGML_STATUS_ABORTED = 1,
  325. };
  326. // get ggml_status name string
  327. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  328. // ieee 754-2008 half-precision float16
  329. // todo: make this not an integral type
  330. typedef uint16_t ggml_fp16_t;
  331. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  332. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  333. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  334. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  335. // google brain half-precision bfloat16
  336. typedef struct { uint16_t bits; } ggml_bf16_t;
  337. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  338. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  339. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  340. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  341. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  342. struct ggml_object;
  343. struct ggml_context;
  344. struct ggml_cgraph;
  345. // NOTE: always add types at the end of the enum to keep backward compatibility
  346. enum ggml_type {
  347. GGML_TYPE_F32 = 0,
  348. GGML_TYPE_F16 = 1,
  349. GGML_TYPE_Q4_0 = 2,
  350. GGML_TYPE_Q4_1 = 3,
  351. // GGML_TYPE_Q4_2 = 4, support has been removed
  352. // GGML_TYPE_Q4_3 = 5, support has been removed
  353. GGML_TYPE_Q5_0 = 6,
  354. GGML_TYPE_Q5_1 = 7,
  355. GGML_TYPE_Q8_0 = 8,
  356. GGML_TYPE_Q8_1 = 9,
  357. GGML_TYPE_Q2_K = 10,
  358. GGML_TYPE_Q3_K = 11,
  359. GGML_TYPE_Q4_K = 12,
  360. GGML_TYPE_Q5_K = 13,
  361. GGML_TYPE_Q6_K = 14,
  362. GGML_TYPE_Q8_K = 15,
  363. GGML_TYPE_IQ2_XXS = 16,
  364. GGML_TYPE_IQ2_XS = 17,
  365. GGML_TYPE_IQ3_XXS = 18,
  366. GGML_TYPE_IQ1_S = 19,
  367. GGML_TYPE_IQ4_NL = 20,
  368. GGML_TYPE_IQ3_S = 21,
  369. GGML_TYPE_IQ2_S = 22,
  370. GGML_TYPE_IQ4_XS = 23,
  371. GGML_TYPE_I8 = 24,
  372. GGML_TYPE_I16 = 25,
  373. GGML_TYPE_I32 = 26,
  374. GGML_TYPE_I64 = 27,
  375. GGML_TYPE_F64 = 28,
  376. GGML_TYPE_IQ1_M = 29,
  377. GGML_TYPE_BF16 = 30,
  378. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  379. // GGML_TYPE_Q4_0_4_8 = 32,
  380. // GGML_TYPE_Q4_0_8_8 = 33,
  381. GGML_TYPE_TQ1_0 = 34,
  382. GGML_TYPE_TQ2_0 = 35,
  383. // GGML_TYPE_IQ4_NL_4_4 = 36,
  384. // GGML_TYPE_IQ4_NL_4_8 = 37,
  385. // GGML_TYPE_IQ4_NL_8_8 = 38,
  386. GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
  387. GGML_TYPE_COUNT = 40,
  388. };
  389. // precision
  390. enum ggml_prec {
  391. GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
  392. GGML_PREC_F32 = 10,
  393. };
  394. // model file types
  395. enum ggml_ftype {
  396. GGML_FTYPE_UNKNOWN = -1,
  397. GGML_FTYPE_ALL_F32 = 0,
  398. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  399. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  400. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  401. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  402. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  403. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  404. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  405. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  406. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  407. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  408. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  409. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  410. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  411. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  412. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  413. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  414. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  415. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  416. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  417. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  418. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  419. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  420. GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
  421. };
  422. // available tensor operations:
  423. enum ggml_op {
  424. GGML_OP_NONE = 0,
  425. GGML_OP_DUP,
  426. GGML_OP_ADD,
  427. GGML_OP_ADD_ID,
  428. GGML_OP_ADD1,
  429. GGML_OP_ACC,
  430. GGML_OP_SUB,
  431. GGML_OP_MUL,
  432. GGML_OP_DIV,
  433. GGML_OP_SQR,
  434. GGML_OP_SQRT,
  435. GGML_OP_LOG,
  436. GGML_OP_SIN,
  437. GGML_OP_COS,
  438. GGML_OP_SUM,
  439. GGML_OP_SUM_ROWS,
  440. GGML_OP_CUMSUM,
  441. GGML_OP_MEAN,
  442. GGML_OP_ARGMAX,
  443. GGML_OP_COUNT_EQUAL,
  444. GGML_OP_REPEAT,
  445. GGML_OP_REPEAT_BACK,
  446. GGML_OP_CONCAT,
  447. GGML_OP_SILU_BACK,
  448. GGML_OP_NORM, // normalize
  449. GGML_OP_RMS_NORM,
  450. GGML_OP_RMS_NORM_BACK,
  451. GGML_OP_GROUP_NORM,
  452. GGML_OP_L2_NORM,
  453. GGML_OP_MUL_MAT,
  454. GGML_OP_MUL_MAT_ID,
  455. GGML_OP_OUT_PROD,
  456. GGML_OP_SCALE,
  457. GGML_OP_SET,
  458. GGML_OP_CPY,
  459. GGML_OP_CONT,
  460. GGML_OP_RESHAPE,
  461. GGML_OP_VIEW,
  462. GGML_OP_PERMUTE,
  463. GGML_OP_TRANSPOSE,
  464. GGML_OP_GET_ROWS,
  465. GGML_OP_GET_ROWS_BACK,
  466. GGML_OP_SET_ROWS,
  467. GGML_OP_DIAG,
  468. GGML_OP_DIAG_MASK_INF,
  469. GGML_OP_DIAG_MASK_ZERO,
  470. GGML_OP_SOFT_MAX,
  471. GGML_OP_SOFT_MAX_BACK,
  472. GGML_OP_ROPE,
  473. GGML_OP_ROPE_BACK,
  474. GGML_OP_CLAMP,
  475. GGML_OP_CONV_TRANSPOSE_1D,
  476. GGML_OP_IM2COL,
  477. GGML_OP_IM2COL_BACK,
  478. GGML_OP_IM2COL_3D,
  479. GGML_OP_CONV_2D,
  480. GGML_OP_CONV_3D,
  481. GGML_OP_CONV_2D_DW,
  482. GGML_OP_CONV_TRANSPOSE_2D,
  483. GGML_OP_POOL_1D,
  484. GGML_OP_POOL_2D,
  485. GGML_OP_POOL_2D_BACK,
  486. GGML_OP_UPSCALE,
  487. GGML_OP_PAD,
  488. GGML_OP_PAD_REFLECT_1D,
  489. GGML_OP_ROLL,
  490. GGML_OP_ARANGE,
  491. GGML_OP_TIMESTEP_EMBEDDING,
  492. GGML_OP_ARGSORT,
  493. GGML_OP_LEAKY_RELU,
  494. GGML_OP_TRI,
  495. GGML_OP_FILL,
  496. GGML_OP_FLASH_ATTN_EXT,
  497. GGML_OP_FLASH_ATTN_BACK,
  498. GGML_OP_SSM_CONV,
  499. GGML_OP_SSM_SCAN,
  500. GGML_OP_WIN_PART,
  501. GGML_OP_WIN_UNPART,
  502. GGML_OP_GET_REL_POS,
  503. GGML_OP_ADD_REL_POS,
  504. GGML_OP_RWKV_WKV6,
  505. GGML_OP_GATED_LINEAR_ATTN,
  506. GGML_OP_RWKV_WKV7,
  507. GGML_OP_SOLVE_TRI,
  508. GGML_OP_UNARY,
  509. GGML_OP_MAP_CUSTOM1,
  510. GGML_OP_MAP_CUSTOM2,
  511. GGML_OP_MAP_CUSTOM3,
  512. GGML_OP_CUSTOM,
  513. GGML_OP_CROSS_ENTROPY_LOSS,
  514. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  515. GGML_OP_OPT_STEP_ADAMW,
  516. GGML_OP_OPT_STEP_SGD,
  517. GGML_OP_GLU,
  518. GGML_OP_COUNT,
  519. };
  520. enum ggml_unary_op {
  521. GGML_UNARY_OP_ABS,
  522. GGML_UNARY_OP_SGN,
  523. GGML_UNARY_OP_NEG,
  524. GGML_UNARY_OP_STEP,
  525. GGML_UNARY_OP_TANH,
  526. GGML_UNARY_OP_ELU,
  527. GGML_UNARY_OP_RELU,
  528. GGML_UNARY_OP_SIGMOID,
  529. GGML_UNARY_OP_GELU,
  530. GGML_UNARY_OP_GELU_QUICK,
  531. GGML_UNARY_OP_SILU,
  532. GGML_UNARY_OP_HARDSWISH,
  533. GGML_UNARY_OP_HARDSIGMOID,
  534. GGML_UNARY_OP_EXP,
  535. GGML_UNARY_OP_EXPM1,
  536. GGML_UNARY_OP_SOFTPLUS,
  537. GGML_UNARY_OP_GELU_ERF,
  538. GGML_UNARY_OP_XIELU,
  539. GGML_UNARY_OP_FLOOR,
  540. GGML_UNARY_OP_CEIL,
  541. GGML_UNARY_OP_ROUND,
  542. GGML_UNARY_OP_TRUNC,
  543. GGML_UNARY_OP_COUNT,
  544. };
  545. enum ggml_glu_op {
  546. GGML_GLU_OP_REGLU,
  547. GGML_GLU_OP_GEGLU,
  548. GGML_GLU_OP_SWIGLU,
  549. GGML_GLU_OP_SWIGLU_OAI,
  550. GGML_GLU_OP_GEGLU_ERF,
  551. GGML_GLU_OP_GEGLU_QUICK,
  552. GGML_GLU_OP_COUNT,
  553. };
  554. enum ggml_object_type {
  555. GGML_OBJECT_TYPE_TENSOR,
  556. GGML_OBJECT_TYPE_GRAPH,
  557. GGML_OBJECT_TYPE_WORK_BUFFER
  558. };
  559. enum ggml_log_level {
  560. GGML_LOG_LEVEL_NONE = 0,
  561. GGML_LOG_LEVEL_DEBUG = 1,
  562. GGML_LOG_LEVEL_INFO = 2,
  563. GGML_LOG_LEVEL_WARN = 3,
  564. GGML_LOG_LEVEL_ERROR = 4,
  565. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  566. };
  567. // this tensor...
  568. enum ggml_tensor_flag {
  569. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  570. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  571. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  572. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  573. };
  574. enum ggml_tri_type {
  575. GGML_TRI_TYPE_UPPER_DIAG = 0,
  576. GGML_TRI_TYPE_UPPER = 1,
  577. GGML_TRI_TYPE_LOWER_DIAG = 2,
  578. GGML_TRI_TYPE_LOWER = 3
  579. };
  580. struct ggml_init_params {
  581. // memory pool
  582. size_t mem_size; // bytes
  583. void * mem_buffer; // if NULL, memory will be allocated internally
  584. bool no_alloc; // don't allocate memory for the tensor data
  585. };
  586. // n-dimensional tensor
  587. struct ggml_tensor {
  588. enum ggml_type type;
  589. struct ggml_backend_buffer * buffer;
  590. int64_t ne[GGML_MAX_DIMS]; // number of elements
  591. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  592. // nb[0] = ggml_type_size(type)
  593. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  594. // nb[i] = nb[i-1] * ne[i-1]
  595. // compute data
  596. enum ggml_op op;
  597. // op params - allocated as int32_t for alignment
  598. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  599. int32_t flags;
  600. struct ggml_tensor * src[GGML_MAX_SRC];
  601. // source tensor and offset for views
  602. struct ggml_tensor * view_src;
  603. size_t view_offs;
  604. void * data;
  605. char name[GGML_MAX_NAME];
  606. void * extra; // extra things e.g. for ggml-cuda.cu
  607. char padding[8];
  608. };
  609. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  610. // Abort callback
  611. // If not NULL, called before ggml computation
  612. // If it returns true, the computation is aborted
  613. typedef bool (*ggml_abort_callback)(void * data);
  614. //
  615. // GUID
  616. //
  617. // GUID types
  618. typedef uint8_t ggml_guid[16];
  619. typedef ggml_guid * ggml_guid_t;
  620. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  621. // misc
  622. GGML_API const char * ggml_version(void);
  623. GGML_API const char * ggml_commit(void);
  624. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  625. GGML_API int64_t ggml_time_ms(void);
  626. GGML_API int64_t ggml_time_us(void);
  627. GGML_API int64_t ggml_cycles(void);
  628. GGML_API int64_t ggml_cycles_per_ms(void);
  629. // accepts a UTF-8 path, even on Windows
  630. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  631. GGML_API void ggml_print_object (const struct ggml_object * obj);
  632. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  633. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  634. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  635. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  636. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  637. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  638. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  639. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  640. GGML_DEPRECATED(
  641. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  642. "use ggml_row_size() instead");
  643. GGML_API const char * ggml_type_name(enum ggml_type type);
  644. GGML_API const char * ggml_op_name (enum ggml_op op);
  645. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  646. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  647. GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
  648. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  649. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  650. GGML_API bool ggml_is_quantized(enum ggml_type type);
  651. // TODO: temporary until model loading of ggml examples is refactored
  652. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  653. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  654. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  655. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  656. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  657. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  658. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  659. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  660. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  661. // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
  662. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  663. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  664. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  665. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  666. // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
  667. GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
  668. // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
  669. GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
  670. // true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
  671. GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
  672. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  673. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  674. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  675. // use this to compute the memory overhead of a tensor
  676. GGML_API size_t ggml_tensor_overhead(void);
  677. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  678. // main
  679. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  680. GGML_API void ggml_reset(struct ggml_context * ctx);
  681. GGML_API void ggml_free (struct ggml_context * ctx);
  682. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  683. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  684. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  685. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  686. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  687. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  688. GGML_API struct ggml_tensor * ggml_new_tensor(
  689. struct ggml_context * ctx,
  690. enum ggml_type type,
  691. int n_dims,
  692. const int64_t *ne);
  693. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  694. struct ggml_context * ctx,
  695. enum ggml_type type,
  696. int64_t ne0);
  697. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  698. struct ggml_context * ctx,
  699. enum ggml_type type,
  700. int64_t ne0,
  701. int64_t ne1);
  702. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  703. struct ggml_context * ctx,
  704. enum ggml_type type,
  705. int64_t ne0,
  706. int64_t ne1,
  707. int64_t ne2);
  708. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  709. struct ggml_context * ctx,
  710. enum ggml_type type,
  711. int64_t ne0,
  712. int64_t ne1,
  713. int64_t ne2,
  714. int64_t ne3);
  715. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  716. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  717. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  718. // Context tensor enumeration and lookup
  719. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  720. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  721. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  722. // Converts a flat index into coordinates
  723. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  724. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  725. GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
  726. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  727. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  728. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  729. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  730. GGML_ATTRIBUTE_FORMAT(2, 3)
  731. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  732. // Tensor flags
  733. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  734. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  735. GGML_API void ggml_set_param(struct ggml_tensor * tensor);
  736. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  737. //
  738. // operations on tensors with backpropagation
  739. //
  740. GGML_API struct ggml_tensor * ggml_dup(
  741. struct ggml_context * ctx,
  742. struct ggml_tensor * a);
  743. // in-place, returns view(a)
  744. GGML_API struct ggml_tensor * ggml_dup_inplace(
  745. struct ggml_context * ctx,
  746. struct ggml_tensor * a);
  747. GGML_API struct ggml_tensor * ggml_add(
  748. struct ggml_context * ctx,
  749. struct ggml_tensor * a,
  750. struct ggml_tensor * b);
  751. GGML_API struct ggml_tensor * ggml_add_inplace(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a,
  754. struct ggml_tensor * b);
  755. GGML_API struct ggml_tensor * ggml_add_cast(
  756. struct ggml_context * ctx,
  757. struct ggml_tensor * a,
  758. struct ggml_tensor * b,
  759. enum ggml_type type);
  760. // dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
  761. GGML_API struct ggml_tensor * ggml_add_id(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a,
  764. struct ggml_tensor * b,
  765. struct ggml_tensor * ids);
  766. GGML_API struct ggml_tensor * ggml_add1(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a,
  769. struct ggml_tensor * b);
  770. GGML_API struct ggml_tensor * ggml_add1_inplace(
  771. struct ggml_context * ctx,
  772. struct ggml_tensor * a,
  773. struct ggml_tensor * b);
  774. // dst = a
  775. // view(dst, nb1, nb2, nb3, offset) += b
  776. // return dst
  777. GGML_API struct ggml_tensor * ggml_acc(
  778. struct ggml_context * ctx,
  779. struct ggml_tensor * a,
  780. struct ggml_tensor * b,
  781. size_t nb1,
  782. size_t nb2,
  783. size_t nb3,
  784. size_t offset);
  785. GGML_API struct ggml_tensor * ggml_acc_inplace(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a,
  788. struct ggml_tensor * b,
  789. size_t nb1,
  790. size_t nb2,
  791. size_t nb3,
  792. size_t offset);
  793. GGML_API struct ggml_tensor * ggml_sub(
  794. struct ggml_context * ctx,
  795. struct ggml_tensor * a,
  796. struct ggml_tensor * b);
  797. GGML_API struct ggml_tensor * ggml_sub_inplace(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a,
  800. struct ggml_tensor * b);
  801. GGML_API struct ggml_tensor * ggml_mul(
  802. struct ggml_context * ctx,
  803. struct ggml_tensor * a,
  804. struct ggml_tensor * b);
  805. GGML_API struct ggml_tensor * ggml_mul_inplace(
  806. struct ggml_context * ctx,
  807. struct ggml_tensor * a,
  808. struct ggml_tensor * b);
  809. GGML_API struct ggml_tensor * ggml_div(
  810. struct ggml_context * ctx,
  811. struct ggml_tensor * a,
  812. struct ggml_tensor * b);
  813. GGML_API struct ggml_tensor * ggml_div_inplace(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a,
  816. struct ggml_tensor * b);
  817. GGML_API struct ggml_tensor * ggml_sqr(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a);
  820. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a);
  823. GGML_API struct ggml_tensor * ggml_sqrt(
  824. struct ggml_context * ctx,
  825. struct ggml_tensor * a);
  826. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a);
  829. GGML_API struct ggml_tensor * ggml_log(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a);
  832. GGML_API struct ggml_tensor * ggml_log_inplace(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a);
  835. GGML_API struct ggml_tensor * ggml_expm1(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a);
  838. GGML_API struct ggml_tensor * ggml_expm1_inplace(
  839. struct ggml_context * ctx,
  840. struct ggml_tensor * a);
  841. GGML_API struct ggml_tensor * ggml_softplus(
  842. struct ggml_context * ctx,
  843. struct ggml_tensor * a);
  844. GGML_API struct ggml_tensor * ggml_softplus_inplace(
  845. struct ggml_context * ctx,
  846. struct ggml_tensor * a);
  847. GGML_API struct ggml_tensor * ggml_sin(
  848. struct ggml_context * ctx,
  849. struct ggml_tensor * a);
  850. GGML_API struct ggml_tensor * ggml_sin_inplace(
  851. struct ggml_context * ctx,
  852. struct ggml_tensor * a);
  853. GGML_API struct ggml_tensor * ggml_cos(
  854. struct ggml_context * ctx,
  855. struct ggml_tensor * a);
  856. GGML_API struct ggml_tensor * ggml_cos_inplace(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a);
  859. // return scalar
  860. GGML_API struct ggml_tensor * ggml_sum(
  861. struct ggml_context * ctx,
  862. struct ggml_tensor * a);
  863. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  864. GGML_API struct ggml_tensor * ggml_sum_rows(
  865. struct ggml_context * ctx,
  866. struct ggml_tensor * a);
  867. GGML_API struct ggml_tensor * ggml_cumsum(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a);
  870. // mean along rows
  871. GGML_API struct ggml_tensor * ggml_mean(
  872. struct ggml_context * ctx,
  873. struct ggml_tensor * a);
  874. // argmax along rows
  875. GGML_API struct ggml_tensor * ggml_argmax(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. // count number of equal elements in a and b
  879. GGML_API struct ggml_tensor * ggml_count_equal(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a,
  882. struct ggml_tensor * b);
  883. // if a is the same shape as b, and a is not parameter, return a
  884. // otherwise, return a new tensor: repeat(a) to fit in b
  885. GGML_API struct ggml_tensor * ggml_repeat(
  886. struct ggml_context * ctx,
  887. struct ggml_tensor * a,
  888. struct ggml_tensor * b);
  889. // repeat a to the specified shape
  890. GGML_API struct ggml_tensor * ggml_repeat_4d(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a,
  893. int64_t ne0,
  894. int64_t ne1,
  895. int64_t ne2,
  896. int64_t ne3);
  897. // sums repetitions in a into shape of b
  898. GGML_API struct ggml_tensor * ggml_repeat_back(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a,
  901. struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
  902. // concat a and b along dim
  903. // used in stable-diffusion
  904. GGML_API struct ggml_tensor * ggml_concat(
  905. struct ggml_context * ctx,
  906. struct ggml_tensor * a,
  907. struct ggml_tensor * b,
  908. int dim);
  909. GGML_API struct ggml_tensor * ggml_abs(
  910. struct ggml_context * ctx,
  911. struct ggml_tensor * a);
  912. GGML_API struct ggml_tensor * ggml_abs_inplace(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a);
  915. GGML_API struct ggml_tensor * ggml_sgn(
  916. struct ggml_context * ctx,
  917. struct ggml_tensor * a);
  918. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  919. struct ggml_context * ctx,
  920. struct ggml_tensor * a);
  921. GGML_API struct ggml_tensor * ggml_neg(
  922. struct ggml_context * ctx,
  923. struct ggml_tensor * a);
  924. GGML_API struct ggml_tensor * ggml_neg_inplace(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a);
  927. GGML_API struct ggml_tensor * ggml_step(
  928. struct ggml_context * ctx,
  929. struct ggml_tensor * a);
  930. GGML_API struct ggml_tensor * ggml_step_inplace(
  931. struct ggml_context * ctx,
  932. struct ggml_tensor * a);
  933. GGML_API struct ggml_tensor * ggml_tanh(
  934. struct ggml_context * ctx,
  935. struct ggml_tensor * a);
  936. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a);
  939. GGML_API struct ggml_tensor * ggml_elu(
  940. struct ggml_context * ctx,
  941. struct ggml_tensor * a);
  942. GGML_API struct ggml_tensor * ggml_elu_inplace(
  943. struct ggml_context * ctx,
  944. struct ggml_tensor * a);
  945. GGML_API struct ggml_tensor * ggml_relu(
  946. struct ggml_context * ctx,
  947. struct ggml_tensor * a);
  948. GGML_API struct ggml_tensor * ggml_leaky_relu(
  949. struct ggml_context * ctx,
  950. struct ggml_tensor * a, float negative_slope, bool inplace);
  951. GGML_API struct ggml_tensor * ggml_relu_inplace(
  952. struct ggml_context * ctx,
  953. struct ggml_tensor * a);
  954. GGML_API struct ggml_tensor * ggml_sigmoid(
  955. struct ggml_context * ctx,
  956. struct ggml_tensor * a);
  957. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  958. struct ggml_context * ctx,
  959. struct ggml_tensor * a);
  960. GGML_API struct ggml_tensor * ggml_gelu(
  961. struct ggml_context * ctx,
  962. struct ggml_tensor * a);
  963. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  964. struct ggml_context * ctx,
  965. struct ggml_tensor * a);
  966. // GELU using erf (error function) when possible
  967. // some backends may fallback to approximation based on Abramowitz and Stegun formula
  968. GGML_API struct ggml_tensor * ggml_gelu_erf(
  969. struct ggml_context * ctx,
  970. struct ggml_tensor * a);
  971. GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
  972. struct ggml_context * ctx,
  973. struct ggml_tensor * a);
  974. GGML_API struct ggml_tensor * ggml_gelu_quick(
  975. struct ggml_context * ctx,
  976. struct ggml_tensor * a);
  977. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  978. struct ggml_context * ctx,
  979. struct ggml_tensor * a);
  980. GGML_API struct ggml_tensor * ggml_silu(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * a);
  983. GGML_API struct ggml_tensor * ggml_silu_inplace(
  984. struct ggml_context * ctx,
  985. struct ggml_tensor * a);
  986. // a - x
  987. // b - dy
  988. GGML_API struct ggml_tensor * ggml_silu_back(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * a,
  991. struct ggml_tensor * b);
  992. // hardswish(x) = x * relu6(x + 3) / 6
  993. GGML_API struct ggml_tensor * ggml_hardswish(
  994. struct ggml_context * ctx,
  995. struct ggml_tensor * a);
  996. // hardsigmoid(x) = relu6(x + 3) / 6
  997. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  998. struct ggml_context * ctx,
  999. struct ggml_tensor * a);
  1000. GGML_API struct ggml_tensor * ggml_exp(
  1001. struct ggml_context * ctx,
  1002. struct ggml_tensor * a);
  1003. GGML_API struct ggml_tensor * ggml_exp_inplace(
  1004. struct ggml_context * ctx,
  1005. struct ggml_tensor * a);
  1006. GGML_API struct ggml_tensor * ggml_floor(
  1007. struct ggml_context * ctx,
  1008. struct ggml_tensor * a);
  1009. GGML_API struct ggml_tensor * ggml_floor_inplace(
  1010. struct ggml_context * ctx,
  1011. struct ggml_tensor * a);
  1012. GGML_API struct ggml_tensor * ggml_ceil(
  1013. struct ggml_context * ctx,
  1014. struct ggml_tensor * a);
  1015. GGML_API struct ggml_tensor * ggml_ceil_inplace(
  1016. struct ggml_context * ctx,
  1017. struct ggml_tensor * a);
  1018. GGML_API struct ggml_tensor * ggml_round(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a);
  1021. GGML_API struct ggml_tensor * ggml_round_inplace(
  1022. struct ggml_context * ctx,
  1023. struct ggml_tensor * a);
  1024. /**
  1025. * Truncates the fractional part of each element in the tensor (towards zero).
  1026. * For example: trunc(3.7) = 3.0, trunc(-2.9) = -2.0
  1027. * Similar to std::trunc in C/C++.
  1028. */
  1029. GGML_API struct ggml_tensor * ggml_trunc(
  1030. struct ggml_context * ctx,
  1031. struct ggml_tensor * a);
  1032. GGML_API struct ggml_tensor * ggml_trunc_inplace(
  1033. struct ggml_context * ctx,
  1034. struct ggml_tensor * a);
  1035. // xIELU activation function
  1036. // x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
  1037. // where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
  1038. // that constrain the positive and negative source alpha values respectively
  1039. GGML_API struct ggml_tensor * ggml_xielu(
  1040. struct ggml_context * ctx,
  1041. struct ggml_tensor * a,
  1042. float alpha_n,
  1043. float alpha_p,
  1044. float beta,
  1045. float eps);
  1046. // gated linear unit ops
  1047. // A: n columns, r rows,
  1048. // result is n / 2 columns, r rows,
  1049. // expects gate in second half of row, unless swapped is true
  1050. GGML_API struct ggml_tensor * ggml_glu(
  1051. struct ggml_context * ctx,
  1052. struct ggml_tensor * a,
  1053. enum ggml_glu_op op,
  1054. bool swapped);
  1055. GGML_API struct ggml_tensor * ggml_reglu(
  1056. struct ggml_context * ctx,
  1057. struct ggml_tensor * a);
  1058. GGML_API struct ggml_tensor * ggml_reglu_swapped(
  1059. struct ggml_context * ctx,
  1060. struct ggml_tensor * a);
  1061. GGML_API struct ggml_tensor * ggml_geglu(
  1062. struct ggml_context * ctx,
  1063. struct ggml_tensor * a);
  1064. GGML_API struct ggml_tensor * ggml_geglu_swapped(
  1065. struct ggml_context * ctx,
  1066. struct ggml_tensor * a);
  1067. GGML_API struct ggml_tensor * ggml_swiglu(
  1068. struct ggml_context * ctx,
  1069. struct ggml_tensor * a);
  1070. GGML_API struct ggml_tensor * ggml_swiglu_swapped(
  1071. struct ggml_context * ctx,
  1072. struct ggml_tensor * a);
  1073. GGML_API struct ggml_tensor * ggml_geglu_erf(
  1074. struct ggml_context * ctx,
  1075. struct ggml_tensor * a);
  1076. GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
  1077. struct ggml_context * ctx,
  1078. struct ggml_tensor * a);
  1079. GGML_API struct ggml_tensor * ggml_geglu_quick(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a);
  1082. GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
  1083. struct ggml_context * ctx,
  1084. struct ggml_tensor * a);
  1085. // A: n columns, r rows,
  1086. // B: n columns, r rows,
  1087. GGML_API struct ggml_tensor * ggml_glu_split(
  1088. struct ggml_context * ctx,
  1089. struct ggml_tensor * a,
  1090. struct ggml_tensor * b,
  1091. enum ggml_glu_op op);
  1092. GGML_API struct ggml_tensor * ggml_reglu_split(
  1093. struct ggml_context * ctx,
  1094. struct ggml_tensor * a,
  1095. struct ggml_tensor * b);
  1096. GGML_API struct ggml_tensor * ggml_geglu_split(
  1097. struct ggml_context * ctx,
  1098. struct ggml_tensor * a,
  1099. struct ggml_tensor * b);
  1100. GGML_API struct ggml_tensor * ggml_swiglu_split(
  1101. struct ggml_context * ctx,
  1102. struct ggml_tensor * a,
  1103. struct ggml_tensor * b);
  1104. GGML_API struct ggml_tensor * ggml_geglu_erf_split(
  1105. struct ggml_context * ctx,
  1106. struct ggml_tensor * a,
  1107. struct ggml_tensor * b);
  1108. GGML_API struct ggml_tensor * ggml_geglu_quick_split(
  1109. struct ggml_context * ctx,
  1110. struct ggml_tensor * a,
  1111. struct ggml_tensor * b);
  1112. GGML_API struct ggml_tensor * ggml_swiglu_oai(
  1113. struct ggml_context * ctx,
  1114. struct ggml_tensor * a,
  1115. struct ggml_tensor * b,
  1116. float alpha,
  1117. float limit);
  1118. // normalize along rows
  1119. GGML_API struct ggml_tensor * ggml_norm(
  1120. struct ggml_context * ctx,
  1121. struct ggml_tensor * a,
  1122. float eps);
  1123. GGML_API struct ggml_tensor * ggml_norm_inplace(
  1124. struct ggml_context * ctx,
  1125. struct ggml_tensor * a,
  1126. float eps);
  1127. GGML_API struct ggml_tensor * ggml_rms_norm(
  1128. struct ggml_context * ctx,
  1129. struct ggml_tensor * a,
  1130. float eps);
  1131. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  1132. struct ggml_context * ctx,
  1133. struct ggml_tensor * a,
  1134. float eps);
  1135. // group normalize along ne0*ne1*n_groups
  1136. // used in stable-diffusion
  1137. GGML_API struct ggml_tensor * ggml_group_norm(
  1138. struct ggml_context * ctx,
  1139. struct ggml_tensor * a,
  1140. int n_groups,
  1141. float eps);
  1142. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  1143. struct ggml_context * ctx,
  1144. struct ggml_tensor * a,
  1145. int n_groups,
  1146. float eps);
  1147. // l2 normalize along rows
  1148. // used in rwkv v7
  1149. GGML_API struct ggml_tensor * ggml_l2_norm(
  1150. struct ggml_context * ctx,
  1151. struct ggml_tensor * a,
  1152. float eps);
  1153. GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
  1154. struct ggml_context * ctx,
  1155. struct ggml_tensor * a,
  1156. float eps);
  1157. // a - x
  1158. // b - dy
  1159. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  1160. struct ggml_context * ctx,
  1161. struct ggml_tensor * a,
  1162. struct ggml_tensor * b,
  1163. float eps);
  1164. // A: k columns, n rows => [ne03, ne02, n, k]
  1165. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  1166. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  1167. GGML_API struct ggml_tensor * ggml_mul_mat(
  1168. struct ggml_context * ctx,
  1169. struct ggml_tensor * a,
  1170. struct ggml_tensor * b);
  1171. // change the precision of a matrix multiplication
  1172. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  1173. GGML_API void ggml_mul_mat_set_prec(
  1174. struct ggml_tensor * a,
  1175. enum ggml_prec prec);
  1176. // indirect matrix multiplication
  1177. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  1178. struct ggml_context * ctx,
  1179. struct ggml_tensor * as,
  1180. struct ggml_tensor * b,
  1181. struct ggml_tensor * ids);
  1182. // A: m columns, n rows,
  1183. // B: p columns, n rows,
  1184. // result is m columns, p rows
  1185. GGML_API struct ggml_tensor * ggml_out_prod(
  1186. struct ggml_context * ctx,
  1187. struct ggml_tensor * a,
  1188. struct ggml_tensor * b);
  1189. //
  1190. // operations on tensors without backpropagation
  1191. //
  1192. GGML_API struct ggml_tensor * ggml_scale(
  1193. struct ggml_context * ctx,
  1194. struct ggml_tensor * a,
  1195. float s);
  1196. // in-place, returns view(a)
  1197. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1198. struct ggml_context * ctx,
  1199. struct ggml_tensor * a,
  1200. float s);
  1201. // x = s * a + b
  1202. GGML_API struct ggml_tensor * ggml_scale_bias(
  1203. struct ggml_context * ctx,
  1204. struct ggml_tensor * a,
  1205. float s,
  1206. float b);
  1207. GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
  1208. struct ggml_context * ctx,
  1209. struct ggml_tensor * a,
  1210. float s,
  1211. float b);
  1212. // b -> view(a,offset,nb1,nb2,3), return modified a
  1213. GGML_API struct ggml_tensor * ggml_set(
  1214. struct ggml_context * ctx,
  1215. struct ggml_tensor * a,
  1216. struct ggml_tensor * b,
  1217. size_t nb1,
  1218. size_t nb2,
  1219. size_t nb3,
  1220. size_t offset); // in bytes
  1221. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1222. GGML_API struct ggml_tensor * ggml_set_inplace(
  1223. struct ggml_context * ctx,
  1224. struct ggml_tensor * a,
  1225. struct ggml_tensor * b,
  1226. size_t nb1,
  1227. size_t nb2,
  1228. size_t nb3,
  1229. size_t offset); // in bytes
  1230. GGML_API struct ggml_tensor * ggml_set_1d(
  1231. struct ggml_context * ctx,
  1232. struct ggml_tensor * a,
  1233. struct ggml_tensor * b,
  1234. size_t offset); // in bytes
  1235. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1236. struct ggml_context * ctx,
  1237. struct ggml_tensor * a,
  1238. struct ggml_tensor * b,
  1239. size_t offset); // in bytes
  1240. // b -> view(a,offset,nb1,nb2,3), return modified a
  1241. GGML_API struct ggml_tensor * ggml_set_2d(
  1242. struct ggml_context * ctx,
  1243. struct ggml_tensor * a,
  1244. struct ggml_tensor * b,
  1245. size_t nb1,
  1246. size_t offset); // in bytes
  1247. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1248. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1249. struct ggml_context * ctx,
  1250. struct ggml_tensor * a,
  1251. struct ggml_tensor * b,
  1252. size_t nb1,
  1253. size_t offset); // in bytes
  1254. // a -> b, return view(b)
  1255. GGML_API struct ggml_tensor * ggml_cpy(
  1256. struct ggml_context * ctx,
  1257. struct ggml_tensor * a,
  1258. struct ggml_tensor * b);
  1259. // note: casting from f32 to i32 will discard the fractional part
  1260. GGML_API struct ggml_tensor * ggml_cast(
  1261. struct ggml_context * ctx,
  1262. struct ggml_tensor * a,
  1263. enum ggml_type type);
  1264. // make contiguous
  1265. GGML_API struct ggml_tensor * ggml_cont(
  1266. struct ggml_context * ctx,
  1267. struct ggml_tensor * a);
  1268. // make contiguous, with new shape
  1269. GGML_API struct ggml_tensor * ggml_cont_1d(
  1270. struct ggml_context * ctx,
  1271. struct ggml_tensor * a,
  1272. int64_t ne0);
  1273. GGML_API struct ggml_tensor * ggml_cont_2d(
  1274. struct ggml_context * ctx,
  1275. struct ggml_tensor * a,
  1276. int64_t ne0,
  1277. int64_t ne1);
  1278. GGML_API struct ggml_tensor * ggml_cont_3d(
  1279. struct ggml_context * ctx,
  1280. struct ggml_tensor * a,
  1281. int64_t ne0,
  1282. int64_t ne1,
  1283. int64_t ne2);
  1284. GGML_API struct ggml_tensor * ggml_cont_4d(
  1285. struct ggml_context * ctx,
  1286. struct ggml_tensor * a,
  1287. int64_t ne0,
  1288. int64_t ne1,
  1289. int64_t ne2,
  1290. int64_t ne3);
  1291. // return view(a), b specifies the new shape
  1292. // TODO: when we start computing gradient, make a copy instead of view
  1293. GGML_API struct ggml_tensor * ggml_reshape(
  1294. struct ggml_context * ctx,
  1295. struct ggml_tensor * a,
  1296. struct ggml_tensor * b);
  1297. // return view(a)
  1298. // TODO: when we start computing gradient, make a copy instead of view
  1299. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1300. struct ggml_context * ctx,
  1301. struct ggml_tensor * a,
  1302. int64_t ne0);
  1303. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1304. struct ggml_context * ctx,
  1305. struct ggml_tensor * a,
  1306. int64_t ne0,
  1307. int64_t ne1);
  1308. // return view(a)
  1309. // TODO: when we start computing gradient, make a copy instead of view
  1310. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1311. struct ggml_context * ctx,
  1312. struct ggml_tensor * a,
  1313. int64_t ne0,
  1314. int64_t ne1,
  1315. int64_t ne2);
  1316. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1317. struct ggml_context * ctx,
  1318. struct ggml_tensor * a,
  1319. int64_t ne0,
  1320. int64_t ne1,
  1321. int64_t ne2,
  1322. int64_t ne3);
  1323. // offset in bytes
  1324. GGML_API struct ggml_tensor * ggml_view_1d(
  1325. struct ggml_context * ctx,
  1326. struct ggml_tensor * a,
  1327. int64_t ne0,
  1328. size_t offset);
  1329. GGML_API struct ggml_tensor * ggml_view_2d(
  1330. struct ggml_context * ctx,
  1331. struct ggml_tensor * a,
  1332. int64_t ne0,
  1333. int64_t ne1,
  1334. size_t nb1, // row stride in bytes
  1335. size_t offset);
  1336. GGML_API struct ggml_tensor * ggml_view_3d(
  1337. struct ggml_context * ctx,
  1338. struct ggml_tensor * a,
  1339. int64_t ne0,
  1340. int64_t ne1,
  1341. int64_t ne2,
  1342. size_t nb1, // row stride in bytes
  1343. size_t nb2, // slice stride in bytes
  1344. size_t offset);
  1345. GGML_API struct ggml_tensor * ggml_view_4d(
  1346. struct ggml_context * ctx,
  1347. struct ggml_tensor * a,
  1348. int64_t ne0,
  1349. int64_t ne1,
  1350. int64_t ne2,
  1351. int64_t ne3,
  1352. size_t nb1, // row stride in bytes
  1353. size_t nb2, // slice stride in bytes
  1354. size_t nb3,
  1355. size_t offset);
  1356. GGML_API struct ggml_tensor * ggml_permute(
  1357. struct ggml_context * ctx,
  1358. struct ggml_tensor * a,
  1359. int axis0,
  1360. int axis1,
  1361. int axis2,
  1362. int axis3);
  1363. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1364. GGML_API struct ggml_tensor * ggml_transpose(
  1365. struct ggml_context * ctx,
  1366. struct ggml_tensor * a);
  1367. // supports 4D a:
  1368. // a [n_embd, ne1, ne2, ne3]
  1369. // b I32 [n_rows, ne2, ne3, 1]
  1370. //
  1371. // return [n_embd, n_rows, ne2, ne3]
  1372. GGML_API struct ggml_tensor * ggml_get_rows(
  1373. struct ggml_context * ctx,
  1374. struct ggml_tensor * a, // data
  1375. struct ggml_tensor * b); // row indices
  1376. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1377. struct ggml_context * ctx,
  1378. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1379. struct ggml_tensor * b, // row indices
  1380. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1381. // a TD [n_embd, ne1, ne2, ne3]
  1382. // b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
  1383. // c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
  1384. //
  1385. // undefined behavior if destination rows overlap
  1386. //
  1387. // broadcast:
  1388. // ne2 % ne11 == 0
  1389. // ne3 % ne12 == 0
  1390. //
  1391. // return view(a)
  1392. GGML_API struct ggml_tensor * ggml_set_rows(
  1393. struct ggml_context * ctx,
  1394. struct ggml_tensor * a, // destination
  1395. struct ggml_tensor * b, // source
  1396. struct ggml_tensor * c); // row indices
  1397. GGML_API struct ggml_tensor * ggml_diag(
  1398. struct ggml_context * ctx,
  1399. struct ggml_tensor * a);
  1400. // set elements above the diagonal to -INF
  1401. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a,
  1404. int n_past);
  1405. // in-place, returns view(a)
  1406. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1407. struct ggml_context * ctx,
  1408. struct ggml_tensor * a,
  1409. int n_past);
  1410. // set elements above the diagonal to 0
  1411. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1412. struct ggml_context * ctx,
  1413. struct ggml_tensor * a,
  1414. int n_past);
  1415. // in-place, returns view(a)
  1416. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1417. struct ggml_context * ctx,
  1418. struct ggml_tensor * a,
  1419. int n_past);
  1420. GGML_API struct ggml_tensor * ggml_soft_max(
  1421. struct ggml_context * ctx,
  1422. struct ggml_tensor * a);
  1423. // in-place, returns view(a)
  1424. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1425. struct ggml_context * ctx,
  1426. struct ggml_tensor * a);
  1427. // a [ne0, ne01, ne02, ne03]
  1428. // mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
  1429. //
  1430. // broadcast:
  1431. // ne02 % ne12 == 0
  1432. // ne03 % ne13 == 0
  1433. //
  1434. // fused soft_max(a*scale + mask*(ALiBi slope))
  1435. // max_bias = 0.0f for no ALiBi
  1436. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1437. struct ggml_context * ctx,
  1438. struct ggml_tensor * a,
  1439. struct ggml_tensor * mask,
  1440. float scale,
  1441. float max_bias);
  1442. GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
  1443. struct ggml_context * ctx,
  1444. struct ggml_tensor * a,
  1445. struct ggml_tensor * mask,
  1446. float scale,
  1447. float max_bias);
  1448. GGML_API void ggml_soft_max_add_sinks(
  1449. struct ggml_tensor * a,
  1450. struct ggml_tensor * sinks);
  1451. GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
  1452. struct ggml_context * ctx,
  1453. struct ggml_tensor * a,
  1454. struct ggml_tensor * b,
  1455. float scale,
  1456. float max_bias);
  1457. // in-place, returns view(a)
  1458. GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
  1459. struct ggml_context * ctx,
  1460. struct ggml_tensor * a,
  1461. struct ggml_tensor * b,
  1462. float scale,
  1463. float max_bias);
  1464. // rotary position embedding
  1465. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1466. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1467. //
  1468. // b is an int32 vector with size a->ne[2], it contains the positions
  1469. GGML_API struct ggml_tensor * ggml_rope(
  1470. struct ggml_context * ctx,
  1471. struct ggml_tensor * a,
  1472. struct ggml_tensor * b,
  1473. int n_dims,
  1474. int mode);
  1475. // in-place, returns view(a)
  1476. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1477. struct ggml_context * ctx,
  1478. struct ggml_tensor * a,
  1479. struct ggml_tensor * b,
  1480. int n_dims,
  1481. int mode);
  1482. // custom RoPE
  1483. // c is freq factors (e.g. phi3-128k), (optional)
  1484. GGML_API struct ggml_tensor * ggml_rope_ext(
  1485. struct ggml_context * ctx,
  1486. struct ggml_tensor * a,
  1487. struct ggml_tensor * b,
  1488. struct ggml_tensor * c,
  1489. int n_dims,
  1490. int mode,
  1491. int n_ctx_orig,
  1492. float freq_base,
  1493. float freq_scale,
  1494. float ext_factor,
  1495. float attn_factor,
  1496. float beta_fast,
  1497. float beta_slow);
  1498. GGML_API struct ggml_tensor * ggml_rope_multi(
  1499. struct ggml_context * ctx,
  1500. struct ggml_tensor * a,
  1501. struct ggml_tensor * b,
  1502. struct ggml_tensor * c,
  1503. int n_dims,
  1504. int sections[GGML_MROPE_SECTIONS],
  1505. int mode,
  1506. int n_ctx_orig,
  1507. float freq_base,
  1508. float freq_scale,
  1509. float ext_factor,
  1510. float attn_factor,
  1511. float beta_fast,
  1512. float beta_slow);
  1513. // in-place, returns view(a)
  1514. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1515. struct ggml_context * ctx,
  1516. struct ggml_tensor * a,
  1517. struct ggml_tensor * b,
  1518. struct ggml_tensor * c,
  1519. int n_dims,
  1520. int mode,
  1521. int n_ctx_orig,
  1522. float freq_base,
  1523. float freq_scale,
  1524. float ext_factor,
  1525. float attn_factor,
  1526. float beta_fast,
  1527. float beta_slow);
  1528. GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
  1529. struct ggml_context * ctx,
  1530. struct ggml_tensor * a,
  1531. struct ggml_tensor * b,
  1532. struct ggml_tensor * c,
  1533. int n_dims,
  1534. int sections[GGML_MROPE_SECTIONS],
  1535. int mode,
  1536. int n_ctx_orig,
  1537. float freq_base,
  1538. float freq_scale,
  1539. float ext_factor,
  1540. float attn_factor,
  1541. float beta_fast,
  1542. float beta_slow);
  1543. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1544. struct ggml_context * ctx,
  1545. struct ggml_tensor * a,
  1546. struct ggml_tensor * b,
  1547. int n_dims,
  1548. int mode,
  1549. int n_ctx_orig,
  1550. float freq_base,
  1551. float freq_scale,
  1552. float ext_factor,
  1553. float attn_factor,
  1554. float beta_fast,
  1555. float beta_slow),
  1556. "use ggml_rope_ext instead");
  1557. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1558. struct ggml_context * ctx,
  1559. struct ggml_tensor * a,
  1560. struct ggml_tensor * b,
  1561. int n_dims,
  1562. int mode,
  1563. int n_ctx_orig,
  1564. float freq_base,
  1565. float freq_scale,
  1566. float ext_factor,
  1567. float attn_factor,
  1568. float beta_fast,
  1569. float beta_slow),
  1570. "use ggml_rope_ext_inplace instead");
  1571. // compute correction dims for YaRN RoPE scaling
  1572. GGML_API void ggml_rope_yarn_corr_dims(
  1573. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1574. // rotary position embedding backward, i.e compute dx from dy
  1575. // a - dy
  1576. GGML_API struct ggml_tensor * ggml_rope_ext_back(
  1577. struct ggml_context * ctx,
  1578. struct ggml_tensor * a, // gradients of ggml_rope result
  1579. struct ggml_tensor * b, // positions
  1580. struct ggml_tensor * c, // freq factors
  1581. int n_dims,
  1582. int mode,
  1583. int n_ctx_orig,
  1584. float freq_base,
  1585. float freq_scale,
  1586. float ext_factor,
  1587. float attn_factor,
  1588. float beta_fast,
  1589. float beta_slow);
  1590. GGML_API struct ggml_tensor * ggml_rope_multi_back(
  1591. struct ggml_context * ctx,
  1592. struct ggml_tensor * a,
  1593. struct ggml_tensor * b,
  1594. struct ggml_tensor * c,
  1595. int n_dims,
  1596. int sections[4],
  1597. int mode,
  1598. int n_ctx_orig,
  1599. float freq_base,
  1600. float freq_scale,
  1601. float ext_factor,
  1602. float attn_factor,
  1603. float beta_fast,
  1604. float beta_slow);
  1605. // clamp
  1606. // in-place, returns view(a)
  1607. GGML_API struct ggml_tensor * ggml_clamp(
  1608. struct ggml_context * ctx,
  1609. struct ggml_tensor * a,
  1610. float min,
  1611. float max);
  1612. // im2col
  1613. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1614. GGML_API struct ggml_tensor * ggml_im2col(
  1615. struct ggml_context * ctx,
  1616. struct ggml_tensor * a, // convolution kernel
  1617. struct ggml_tensor * b, // data
  1618. int s0, // stride dimension 0
  1619. int s1, // stride dimension 1
  1620. int p0, // padding dimension 0
  1621. int p1, // padding dimension 1
  1622. int d0, // dilation dimension 0
  1623. int d1, // dilation dimension 1
  1624. bool is_2D,
  1625. enum ggml_type dst_type);
  1626. GGML_API struct ggml_tensor * ggml_im2col_back(
  1627. struct ggml_context * ctx,
  1628. struct ggml_tensor * a, // convolution kernel
  1629. struct ggml_tensor * b, // gradient of im2col output
  1630. int64_t * ne, // shape of im2col input
  1631. int s0, // stride dimension 0
  1632. int s1, // stride dimension 1
  1633. int p0, // padding dimension 0
  1634. int p1, // padding dimension 1
  1635. int d0, // dilation dimension 0
  1636. int d1, // dilation dimension 1
  1637. bool is_2D);
  1638. GGML_API struct ggml_tensor * ggml_conv_1d(
  1639. struct ggml_context * ctx,
  1640. struct ggml_tensor * a, // convolution kernel
  1641. struct ggml_tensor * b, // data
  1642. int s0, // stride
  1643. int p0, // padding
  1644. int d0); // dilation
  1645. // conv_1d with padding = half
  1646. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1647. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1648. struct ggml_context * ctx,
  1649. struct ggml_tensor * a, // convolution kernel
  1650. struct ggml_tensor * b, // data
  1651. int s, // stride
  1652. int d); // dilation
  1653. // depthwise
  1654. // TODO: this is very likely wrong for some cases! - needs more testing
  1655. GGML_API struct ggml_tensor * ggml_conv_1d_dw(
  1656. struct ggml_context * ctx,
  1657. struct ggml_tensor * a, // convolution kernel
  1658. struct ggml_tensor * b, // data
  1659. int s0, // stride
  1660. int p0, // padding
  1661. int d0); // dilation
  1662. GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
  1663. struct ggml_context * ctx,
  1664. struct ggml_tensor * a, // convolution kernel
  1665. struct ggml_tensor * b, // data
  1666. int s0, // stride
  1667. int d0); // dilation
  1668. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1669. struct ggml_context * ctx,
  1670. struct ggml_tensor * a, // convolution kernel
  1671. struct ggml_tensor * b, // data
  1672. int s0, // stride
  1673. int p0, // padding
  1674. int d0); // dilation
  1675. GGML_API struct ggml_tensor * ggml_conv_2d(
  1676. struct ggml_context * ctx,
  1677. struct ggml_tensor * a, // convolution kernel
  1678. struct ggml_tensor * b, // data
  1679. int s0, // stride dimension 0
  1680. int s1, // stride dimension 1
  1681. int p0, // padding dimension 0
  1682. int p1, // padding dimension 1
  1683. int d0, // dilation dimension 0
  1684. int d1); // dilation dimension 1
  1685. GGML_API struct ggml_tensor * ggml_im2col_3d(
  1686. struct ggml_context * ctx,
  1687. struct ggml_tensor * a,
  1688. struct ggml_tensor * b,
  1689. int64_t IC,
  1690. int s0, // stride width
  1691. int s1, // stride height
  1692. int s2, // stride depth
  1693. int p0, // padding width
  1694. int p1, // padding height
  1695. int p2, // padding depth
  1696. int d0, // dilation width
  1697. int d1, // dilation height
  1698. int d2, // dilation depth
  1699. enum ggml_type dst_type);
  1700. // a: [OC*IC, KD, KH, KW]
  1701. // b: [N*IC, ID, IH, IW]
  1702. // result: [N*OC, OD, OH, OW]
  1703. GGML_API struct ggml_tensor * ggml_conv_3d(
  1704. struct ggml_context * ctx,
  1705. struct ggml_tensor * a,
  1706. struct ggml_tensor * b,
  1707. int64_t IC,
  1708. int s0, // stride width
  1709. int s1, // stride height
  1710. int s2, // stride depth
  1711. int p0, // padding width
  1712. int p1, // padding height
  1713. int p2, // padding depth
  1714. int d0, // dilation width
  1715. int d1, // dilation height
  1716. int d2 // dilation depth
  1717. );
  1718. // kernel size is a->ne[0] x a->ne[1]
  1719. // stride is equal to kernel size
  1720. // padding is zero
  1721. // example:
  1722. // a: 16 16 3 768
  1723. // b: 1024 1024 3 1
  1724. // res: 64 64 768 1
  1725. // used in sam
  1726. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1727. struct ggml_context * ctx,
  1728. struct ggml_tensor * a,
  1729. struct ggml_tensor * b);
  1730. // kernel size is a->ne[0] x a->ne[1]
  1731. // stride is 1
  1732. // padding is half
  1733. // example:
  1734. // a: 3 3 256 256
  1735. // b: 64 64 256 1
  1736. // res: 64 64 256 1
  1737. // used in sam
  1738. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1739. struct ggml_context * ctx,
  1740. struct ggml_tensor * a,
  1741. struct ggml_tensor * b);
  1742. // depthwise (via im2col and mul_mat)
  1743. GGML_API struct ggml_tensor * ggml_conv_2d_dw(
  1744. struct ggml_context * ctx,
  1745. struct ggml_tensor * a, // convolution kernel
  1746. struct ggml_tensor * b, // data
  1747. int s0, // stride dimension 0
  1748. int s1, // stride dimension 1
  1749. int p0, // padding dimension 0
  1750. int p1, // padding dimension 1
  1751. int d0, // dilation dimension 0
  1752. int d1); // dilation dimension 1
  1753. // Depthwise 2D convolution
  1754. // may be faster than ggml_conv_2d_dw, but not available in all backends
  1755. // a: KW KH 1 C convolution kernel
  1756. // b: W H C N input data
  1757. // res: W_out H_out C N
  1758. GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
  1759. struct ggml_context * ctx,
  1760. struct ggml_tensor * a,
  1761. struct ggml_tensor * b,
  1762. int stride0,
  1763. int stride1,
  1764. int pad0,
  1765. int pad1,
  1766. int dilation0,
  1767. int dilation1);
  1768. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1769. struct ggml_context * ctx,
  1770. struct ggml_tensor * a,
  1771. struct ggml_tensor * b,
  1772. int stride);
  1773. GGML_API struct ggml_tensor * ggml_conv_2d_direct(
  1774. struct ggml_context * ctx,
  1775. struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
  1776. struct ggml_tensor * b, // input data [W, H, C, N]
  1777. int s0, // stride dimension 0
  1778. int s1, // stride dimension 1
  1779. int p0, // padding dimension 0
  1780. int p1, // padding dimension 1
  1781. int d0, // dilation dimension 0
  1782. int d1); // dilation dimension 1
  1783. GGML_API struct ggml_tensor * ggml_conv_3d_direct(
  1784. struct ggml_context * ctx,
  1785. struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
  1786. struct ggml_tensor * b, // input [W, H, D, C * N]
  1787. int s0, // stride
  1788. int s1,
  1789. int s2,
  1790. int p0, // padding
  1791. int p1,
  1792. int p2,
  1793. int d0, // dilation
  1794. int d1,
  1795. int d2,
  1796. int n_channels,
  1797. int n_batch,
  1798. int n_channels_out);
  1799. enum ggml_op_pool {
  1800. GGML_OP_POOL_MAX,
  1801. GGML_OP_POOL_AVG,
  1802. GGML_OP_POOL_COUNT,
  1803. };
  1804. GGML_API struct ggml_tensor * ggml_pool_1d(
  1805. struct ggml_context * ctx,
  1806. struct ggml_tensor * a,
  1807. enum ggml_op_pool op,
  1808. int k0, // kernel size
  1809. int s0, // stride
  1810. int p0); // padding
  1811. // the result will have 2*p0 padding for the first dimension
  1812. // and 2*p1 padding for the second dimension
  1813. GGML_API struct ggml_tensor * ggml_pool_2d(
  1814. struct ggml_context * ctx,
  1815. struct ggml_tensor * a,
  1816. enum ggml_op_pool op,
  1817. int k0,
  1818. int k1,
  1819. int s0,
  1820. int s1,
  1821. float p0,
  1822. float p1);
  1823. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1824. struct ggml_context * ctx,
  1825. struct ggml_tensor * a,
  1826. struct ggml_tensor * af, // "a"/input used in forward pass
  1827. enum ggml_op_pool op,
  1828. int k0,
  1829. int k1,
  1830. int s0,
  1831. int s1,
  1832. float p0,
  1833. float p1);
  1834. enum ggml_scale_mode {
  1835. GGML_SCALE_MODE_NEAREST = 0,
  1836. GGML_SCALE_MODE_BILINEAR = 1,
  1837. GGML_SCALE_MODE_BICUBIC = 2,
  1838. GGML_SCALE_MODE_COUNT
  1839. };
  1840. enum ggml_scale_flag {
  1841. GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
  1842. };
  1843. // interpolate
  1844. // multiplies ne0 and ne1 by scale factor
  1845. GGML_API struct ggml_tensor * ggml_upscale(
  1846. struct ggml_context * ctx,
  1847. struct ggml_tensor * a,
  1848. int scale_factor,
  1849. enum ggml_scale_mode mode);
  1850. // interpolate
  1851. // interpolate scale to specified dimensions
  1852. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
  1853. struct ggml_context * ctx,
  1854. struct ggml_tensor * a,
  1855. int ne0,
  1856. int ne1,
  1857. int ne2,
  1858. int ne3,
  1859. enum ggml_scale_mode mode),
  1860. "use ggml_interpolate instead");
  1861. // Up- or downsamples the input to the specified size.
  1862. // 2D scale modes (eg. bilinear) are applied to the first two dimensions.
  1863. GGML_API struct ggml_tensor * ggml_interpolate(
  1864. struct ggml_context * ctx,
  1865. struct ggml_tensor * a,
  1866. int64_t ne0,
  1867. int64_t ne1,
  1868. int64_t ne2,
  1869. int64_t ne3,
  1870. uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
  1871. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1872. GGML_API struct ggml_tensor * ggml_pad(
  1873. struct ggml_context * ctx,
  1874. struct ggml_tensor * a,
  1875. int p0,
  1876. int p1,
  1877. int p2,
  1878. int p3);
  1879. GGML_API struct ggml_tensor * ggml_pad_ext(
  1880. struct ggml_context * ctx,
  1881. struct ggml_tensor * a,
  1882. int lp0,
  1883. int rp0,
  1884. int lp1,
  1885. int rp1,
  1886. int lp2,
  1887. int rp2,
  1888. int lp3,
  1889. int rp3
  1890. );
  1891. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1892. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1893. struct ggml_context * ctx,
  1894. struct ggml_tensor * a,
  1895. int p0,
  1896. int p1);
  1897. // Move tensor elements by an offset given for each dimension. Elements that
  1898. // are shifted beyond the last position are wrapped around to the beginning.
  1899. GGML_API struct ggml_tensor * ggml_roll(
  1900. struct ggml_context * ctx,
  1901. struct ggml_tensor * a,
  1902. int shift0,
  1903. int shift1,
  1904. int shift2,
  1905. int shift3);
  1906. // Convert matrix into a triangular one (upper, strict upper, lower or strict lower) by writing
  1907. // zeroes everywhere outside the masked area
  1908. GGML_API struct ggml_tensor * ggml_tri(
  1909. struct ggml_context * ctx,
  1910. struct ggml_tensor * a,
  1911. enum ggml_tri_type type);
  1912. // Fill tensor a with constant c
  1913. GGML_API struct ggml_tensor * ggml_fill(
  1914. struct ggml_context * ctx,
  1915. struct ggml_tensor * a,
  1916. float c);
  1917. GGML_API struct ggml_tensor * ggml_fill_inplace(
  1918. struct ggml_context * ctx,
  1919. struct ggml_tensor * a,
  1920. float c);
  1921. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1922. // timesteps: [N,]
  1923. // return: [N, dim]
  1924. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1925. struct ggml_context * ctx,
  1926. struct ggml_tensor * timesteps,
  1927. int dim,
  1928. int max_period);
  1929. // sort rows
  1930. enum ggml_sort_order {
  1931. GGML_SORT_ORDER_ASC,
  1932. GGML_SORT_ORDER_DESC,
  1933. };
  1934. GGML_API struct ggml_tensor * ggml_argsort(
  1935. struct ggml_context * ctx,
  1936. struct ggml_tensor * a,
  1937. enum ggml_sort_order order);
  1938. GGML_API struct ggml_tensor * ggml_arange(
  1939. struct ggml_context * ctx,
  1940. float start,
  1941. float stop,
  1942. float step);
  1943. // top k elements per row
  1944. GGML_API struct ggml_tensor * ggml_top_k(
  1945. struct ggml_context * ctx,
  1946. struct ggml_tensor * a,
  1947. int k);
  1948. #define GGML_KQ_MASK_PAD 64
  1949. // q: [n_embd_k, n_batch, n_head, ne3 ]
  1950. // k: [n_embd_k, n_kv, n_head_kv, ne3 ]
  1951. // v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
  1952. // mask: [n_kv, n_batch_pad, ne32, ne33] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1953. // res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
  1954. //
  1955. // broadcast:
  1956. // n_head % n_head_kv == 0
  1957. // n_head % ne32 == 0
  1958. // ne3 % ne33 == 0
  1959. //
  1960. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1961. struct ggml_context * ctx,
  1962. struct ggml_tensor * q,
  1963. struct ggml_tensor * k,
  1964. struct ggml_tensor * v,
  1965. struct ggml_tensor * mask,
  1966. float scale,
  1967. float max_bias,
  1968. float logit_softcap);
  1969. GGML_API void ggml_flash_attn_ext_set_prec(
  1970. struct ggml_tensor * a,
  1971. enum ggml_prec prec);
  1972. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1973. const struct ggml_tensor * a);
  1974. GGML_API void ggml_flash_attn_ext_add_sinks(
  1975. struct ggml_tensor * a,
  1976. struct ggml_tensor * sinks);
  1977. // TODO: needs to be adapted to ggml_flash_attn_ext
  1978. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1979. struct ggml_context * ctx,
  1980. struct ggml_tensor * q,
  1981. struct ggml_tensor * k,
  1982. struct ggml_tensor * v,
  1983. struct ggml_tensor * d,
  1984. bool masked);
  1985. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1986. struct ggml_context * ctx,
  1987. struct ggml_tensor * sx,
  1988. struct ggml_tensor * c);
  1989. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1990. struct ggml_context * ctx,
  1991. struct ggml_tensor * s,
  1992. struct ggml_tensor * x,
  1993. struct ggml_tensor * dt,
  1994. struct ggml_tensor * A,
  1995. struct ggml_tensor * B,
  1996. struct ggml_tensor * C,
  1997. struct ggml_tensor * ids);
  1998. // partition into non-overlapping windows with padding if needed
  1999. // example:
  2000. // a: 768 64 64 1
  2001. // w: 14
  2002. // res: 768 14 14 25
  2003. // used in sam
  2004. GGML_API struct ggml_tensor * ggml_win_part(
  2005. struct ggml_context * ctx,
  2006. struct ggml_tensor * a,
  2007. int w);
  2008. // reverse of ggml_win_part
  2009. // used in sam
  2010. GGML_API struct ggml_tensor * ggml_win_unpart(
  2011. struct ggml_context * ctx,
  2012. struct ggml_tensor * a,
  2013. int w0,
  2014. int h0,
  2015. int w);
  2016. GGML_API struct ggml_tensor * ggml_unary(
  2017. struct ggml_context * ctx,
  2018. struct ggml_tensor * a,
  2019. enum ggml_unary_op op);
  2020. GGML_API struct ggml_tensor * ggml_unary_inplace(
  2021. struct ggml_context * ctx,
  2022. struct ggml_tensor * a,
  2023. enum ggml_unary_op op);
  2024. // used in sam
  2025. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  2026. struct ggml_context * ctx,
  2027. struct ggml_tensor * a,
  2028. int qh,
  2029. int kh);
  2030. // used in sam
  2031. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  2032. struct ggml_context * ctx,
  2033. struct ggml_tensor * a,
  2034. struct ggml_tensor * pw,
  2035. struct ggml_tensor * ph);
  2036. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  2037. struct ggml_context * ctx,
  2038. struct ggml_tensor * a,
  2039. struct ggml_tensor * pw,
  2040. struct ggml_tensor * ph);
  2041. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  2042. struct ggml_context * ctx,
  2043. struct ggml_tensor * k,
  2044. struct ggml_tensor * v,
  2045. struct ggml_tensor * r,
  2046. struct ggml_tensor * tf,
  2047. struct ggml_tensor * td,
  2048. struct ggml_tensor * state);
  2049. GGML_API struct ggml_tensor * ggml_gated_linear_attn(
  2050. struct ggml_context * ctx,
  2051. struct ggml_tensor * k,
  2052. struct ggml_tensor * v,
  2053. struct ggml_tensor * q,
  2054. struct ggml_tensor * g,
  2055. struct ggml_tensor * state,
  2056. float scale);
  2057. GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
  2058. struct ggml_context * ctx,
  2059. struct ggml_tensor * r,
  2060. struct ggml_tensor * w,
  2061. struct ggml_tensor * k,
  2062. struct ggml_tensor * v,
  2063. struct ggml_tensor * a,
  2064. struct ggml_tensor * b,
  2065. struct ggml_tensor * state);
  2066. /* Solves a specific equation of the form Ax=B, where A is a triangular matrix
  2067. * without zeroes on the diagonal (i.e. invertible).
  2068. * B can have any number of columns, but must have the same number of rows as A
  2069. * If A is [n, n] and B is [n, m], then the result will be [n, m] as well
  2070. * Has O(n^3) complexity (unlike most matrix ops out there), so use on cases
  2071. * where n > 100 sparingly, pre-chunk if necessary.
  2072. *
  2073. * If left = false, solves xA=B instead
  2074. * If lower = false, assumes upper triangular instead
  2075. * If uni = true, assumes diagonal of A to be all ones (will override actual values)
  2076. *
  2077. * TODO: currently only lower, right, non-unitriangular variant is implemented
  2078. */
  2079. GGML_API struct ggml_tensor * ggml_solve_tri(
  2080. struct ggml_context * ctx,
  2081. struct ggml_tensor * a,
  2082. struct ggml_tensor * b,
  2083. bool left,
  2084. bool lower,
  2085. bool uni);
  2086. // custom operators
  2087. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  2088. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  2089. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  2090. #define GGML_N_TASKS_MAX (-1)
  2091. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  2092. GGML_API struct ggml_tensor * ggml_map_custom1(
  2093. struct ggml_context * ctx,
  2094. struct ggml_tensor * a,
  2095. ggml_custom1_op_t fun,
  2096. int n_tasks,
  2097. void * userdata);
  2098. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  2099. struct ggml_context * ctx,
  2100. struct ggml_tensor * a,
  2101. ggml_custom1_op_t fun,
  2102. int n_tasks,
  2103. void * userdata);
  2104. GGML_API struct ggml_tensor * ggml_map_custom2(
  2105. struct ggml_context * ctx,
  2106. struct ggml_tensor * a,
  2107. struct ggml_tensor * b,
  2108. ggml_custom2_op_t fun,
  2109. int n_tasks,
  2110. void * userdata);
  2111. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  2112. struct ggml_context * ctx,
  2113. struct ggml_tensor * a,
  2114. struct ggml_tensor * b,
  2115. ggml_custom2_op_t fun,
  2116. int n_tasks,
  2117. void * userdata);
  2118. GGML_API struct ggml_tensor * ggml_map_custom3(
  2119. struct ggml_context * ctx,
  2120. struct ggml_tensor * a,
  2121. struct ggml_tensor * b,
  2122. struct ggml_tensor * c,
  2123. ggml_custom3_op_t fun,
  2124. int n_tasks,
  2125. void * userdata);
  2126. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  2127. struct ggml_context * ctx,
  2128. struct ggml_tensor * a,
  2129. struct ggml_tensor * b,
  2130. struct ggml_tensor * c,
  2131. ggml_custom3_op_t fun,
  2132. int n_tasks,
  2133. void * userdata);
  2134. typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
  2135. GGML_API struct ggml_tensor * ggml_custom_4d(
  2136. struct ggml_context * ctx,
  2137. enum ggml_type type,
  2138. int64_t ne0,
  2139. int64_t ne1,
  2140. int64_t ne2,
  2141. int64_t ne3,
  2142. struct ggml_tensor ** args,
  2143. int n_args,
  2144. ggml_custom_op_t fun,
  2145. int n_tasks,
  2146. void * userdata);
  2147. GGML_API struct ggml_tensor * ggml_custom_inplace(
  2148. struct ggml_context * ctx,
  2149. struct ggml_tensor * a,
  2150. struct ggml_tensor ** args,
  2151. int n_args,
  2152. ggml_custom_op_t fun,
  2153. int n_tasks,
  2154. void * userdata);
  2155. // loss function
  2156. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  2157. struct ggml_context * ctx,
  2158. struct ggml_tensor * a, // logits
  2159. struct ggml_tensor * b); // labels
  2160. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  2161. struct ggml_context * ctx,
  2162. struct ggml_tensor * a, // logits
  2163. struct ggml_tensor * b, // labels
  2164. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  2165. // AdamW optimizer step
  2166. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  2167. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  2168. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  2169. struct ggml_context * ctx,
  2170. struct ggml_tensor * a,
  2171. struct ggml_tensor * grad,
  2172. struct ggml_tensor * m,
  2173. struct ggml_tensor * v,
  2174. struct ggml_tensor * adamw_params); // parameters such as the learning rate
  2175. // stochastic gradient descent step (with weight decay)
  2176. GGML_API struct ggml_tensor * ggml_opt_step_sgd(
  2177. struct ggml_context * ctx,
  2178. struct ggml_tensor * a,
  2179. struct ggml_tensor * grad,
  2180. struct ggml_tensor * sgd_params); // alpha, weight decay
  2181. //
  2182. // automatic differentiation
  2183. //
  2184. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2185. GGML_API void ggml_build_backward_expand(
  2186. struct ggml_context * ctx, // context for gradient computation
  2187. struct ggml_cgraph * cgraph,
  2188. struct ggml_tensor ** grad_accs);
  2189. // graph allocation in a context
  2190. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  2191. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  2192. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
  2193. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  2194. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  2195. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  2196. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  2197. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  2198. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  2199. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  2200. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2201. GGML_API size_t ggml_graph_overhead(void);
  2202. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  2203. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  2204. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2205. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2206. // print info and performance information for the graph
  2207. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  2208. // dump the graph into a file using the dot format
  2209. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  2210. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  2211. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  2212. // Set callback for all future logging events.
  2213. // If this is not called, or NULL is supplied, everything is output on stderr.
  2214. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  2215. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  2216. //
  2217. // quantization
  2218. //
  2219. // - ggml_quantize_init can be called multiple times with the same type
  2220. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  2221. // automatically called by ggml_quantize_chunk for convenience
  2222. //
  2223. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  2224. // call this at the end of the program to avoid memory leaks
  2225. //
  2226. // note: these are thread-safe
  2227. //
  2228. GGML_API void ggml_quantize_init(enum ggml_type type);
  2229. GGML_API void ggml_quantize_free(void);
  2230. // some quantization type cannot be used without an importance matrix
  2231. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  2232. // calls ggml_quantize_init internally (i.e. can allocate memory)
  2233. GGML_API size_t ggml_quantize_chunk(
  2234. enum ggml_type type,
  2235. const float * src,
  2236. void * dst,
  2237. int64_t start,
  2238. int64_t nrows,
  2239. int64_t n_per_row,
  2240. const float * imatrix);
  2241. #ifdef __cplusplus
  2242. // restrict not standard in C++
  2243. # if defined(__GNUC__)
  2244. # define GGML_RESTRICT __restrict__
  2245. # elif defined(__clang__)
  2246. # define GGML_RESTRICT __restrict
  2247. # elif defined(_MSC_VER)
  2248. # define GGML_RESTRICT __restrict
  2249. # else
  2250. # define GGML_RESTRICT
  2251. # endif
  2252. #else
  2253. # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
  2254. # define GGML_RESTRICT __restrict
  2255. # else
  2256. # define GGML_RESTRICT restrict
  2257. # endif
  2258. #endif
  2259. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2260. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2261. struct ggml_type_traits {
  2262. const char * type_name;
  2263. int64_t blck_size;
  2264. int64_t blck_size_interleave; // interleave elements in blocks
  2265. size_t type_size;
  2266. bool is_quantized;
  2267. ggml_to_float_t to_float;
  2268. ggml_from_float_t from_float_ref;
  2269. };
  2270. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  2271. // ggml threadpool
  2272. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  2273. // the goal should be to create an API that other backends can use move everything to the ggml base
  2274. // scheduling priorities
  2275. enum ggml_sched_priority {
  2276. GGML_SCHED_PRIO_LOW = -1,
  2277. GGML_SCHED_PRIO_NORMAL,
  2278. GGML_SCHED_PRIO_MEDIUM,
  2279. GGML_SCHED_PRIO_HIGH,
  2280. GGML_SCHED_PRIO_REALTIME
  2281. };
  2282. // threadpool params
  2283. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  2284. struct ggml_threadpool_params {
  2285. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  2286. int n_threads; // number of threads
  2287. enum ggml_sched_priority prio; // thread priority
  2288. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  2289. bool strict_cpu; // strict cpu placement
  2290. bool paused; // start in paused state
  2291. };
  2292. struct ggml_threadpool; // forward declaration, see ggml.c
  2293. typedef struct ggml_threadpool * ggml_threadpool_t;
  2294. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  2295. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  2296. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  2297. #ifdef __cplusplus
  2298. }
  2299. #endif