| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685 |
- #pragma once
- //
- // GGML Tensor Library
- //
- // This documentation is still a work in progress.
- // If you wish some specific topics to be covered, feel free to drop a comment:
- //
- // https://github.com/ggerganov/whisper.cpp/issues/40
- //
- // ## Overview
- //
- // This library implements:
- //
- // - a set of tensor operations
- // - automatic differentiation
- // - basic optimization algorithms
- //
- // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
- // but is not limited to, the following:
- //
- // - linear regression
- // - support vector machines
- // - neural networks
- //
- // The library allows the user to define a certain function using the available tensor operations. This function
- // definition is represented internally via a computation graph. Each tensor operation in the function definition
- // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
- // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
- // using one of the available optimization algorithms.
- //
- // For example, here we define the function: f(x) = a*x^2 + b
- //
- // {
- // struct ggml_init_params params = {
- // .mem_size = 16*1024*1024,
- // .mem_buffer = NULL,
- // };
- //
- // // memory allocation happens here
- // struct ggml_context * ctx = ggml_init(params);
- //
- // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- //
- // ggml_set_param(ctx, x); // x is an input variable
- //
- // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
- // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
- //
- // ...
- // }
- //
- // Notice that the function definition above does not involve any actual computation. The computation is performed only
- // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
- //
- // {
- // ...
- //
- // struct ggml_cgraph * gf = ggml_new_graph(ctx);
- // ggml_build_forward_expand(gf, f);
- //
- // // set the input variable and parameter values
- // ggml_set_f32(x, 2.0f);
- // ggml_set_f32(a, 3.0f);
- // ggml_set_f32(b, 4.0f);
- //
- // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
- //
- // printf("f = %f\n", ggml_get_f32_1d(f, 0));
- //
- // ...
- // }
- //
- // The actual computation is performed in the ggml_graph_compute() function.
- //
- // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
- // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
- // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
- // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
- // actually needed.
- //
- // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
- // differentiation and optimization algorithms.
- //
- // The described approach allows to define the function graph once and then compute its forward or backward graphs
- // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
- // the user can avoid the memory allocation overhead at runtime.
- //
- // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
- // citizens, but in theory the library can be extended to support FP8 and integer data types.
- //
- // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
- // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
- // clear that the library needs to support more complex operations. The way to support these operations is not clear
- // yet, but a few examples are demonstrated in the following operations:
- //
- // - ggml_permute()
- // - ggml_conv_1d_1s()
- // - ggml_conv_1d_2s()
- //
- // For each tensor operator, the library implements a forward and backward computation function. The forward function
- // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
- // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
- // calculus class, or watch the following video:
- //
- // What is Automatic Differentiation?
- // https://www.youtube.com/watch?v=wG_nF1awSSY
- //
- //
- // ## Tensor data (struct ggml_tensor)
- //
- // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
- // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
- // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
- //
- // {
- // struct ggml_tensor * c = ggml_add(ctx, a, b);
- //
- // assert(c->src[0] == a);
- // assert(c->src[1] == b);
- // }
- //
- // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
- // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
- // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
- // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
- // contiguous in memory.
- //
- // The data of the tensor is accessed via the "data" pointer. For example:
- //
- // {
- // const int nx = 2;
- // const int ny = 3;
- //
- // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
- //
- // for (int y = 0; y < ny; y++) {
- // for (int x = 0; x < nx; x++) {
- // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
- // }
- // }
- //
- // ...
- // }
- //
- // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
- //
- // ## The matrix multiplication operator (ggml_mul_mat)
- //
- // TODO
- //
- //
- // ## Multi-threading
- //
- // TODO
- //
- //
- // ## Overview of ggml.c
- //
- // TODO
- //
- //
- // ## SIMD optimizations
- //
- // TODO
- //
- //
- // ## Debugging ggml
- //
- // TODO
- //
- //
- #ifdef GGML_SHARED
- # if defined(_WIN32) && !defined(__MINGW32__)
- # ifdef GGML_BUILD
- # define GGML_API __declspec(dllexport) extern
- # else
- # define GGML_API __declspec(dllimport) extern
- # endif
- # else
- # define GGML_API __attribute__ ((visibility ("default"))) extern
- # endif
- #else
- # define GGML_API extern
- #endif
- // TODO: support for clang
- #ifdef __GNUC__
- # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
- #elif defined(_MSC_VER)
- # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
- #else
- # define GGML_DEPRECATED(func, hint) func
- #endif
- #ifndef __GNUC__
- # define GGML_ATTRIBUTE_FORMAT(...)
- #elif defined(__MINGW32__) && !defined(__clang__)
- # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #include <stdbool.h>
- #include <stddef.h>
- #include <stdint.h>
- #include <stdio.h>
- #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
- #define GGML_FILE_VERSION 2
- #define GGML_QNT_VERSION 2 // bump this on quantization format changes
- #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
- #define GGML_MAX_DIMS 4
- #define GGML_MAX_PARAMS 2048
- #define GGML_MAX_SRC 10
- #define GGML_MAX_N_THREADS 512
- #define GGML_MAX_OP_PARAMS 64
- #ifndef GGML_MAX_NAME
- # define GGML_MAX_NAME 64
- #endif
- #define GGML_DEFAULT_N_THREADS 4
- #define GGML_DEFAULT_GRAPH_SIZE 2048
- #if UINTPTR_MAX == 0xFFFFFFFF
- #define GGML_MEM_ALIGN 4
- #else
- #define GGML_MEM_ALIGN 16
- #endif
- #define GGML_EXIT_SUCCESS 0
- #define GGML_EXIT_ABORTED 1
- // TODO: convert to enum https://github.com/ggml-org/llama.cpp/pull/16187#discussion_r2388538726
- #define GGML_ROPE_TYPE_NORMAL 0
- #define GGML_ROPE_TYPE_NEOX 2
- #define GGML_ROPE_TYPE_MROPE 8
- #define GGML_ROPE_TYPE_VISION 24
- #define GGML_ROPE_TYPE_IMROPE 40 // binary: 101000
- #define GGML_MROPE_SECTIONS 4
- #define GGML_UNUSED(x) (void)(x)
- #ifdef __CUDACC__
- template<typename... Args>
- __host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
- #define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
- #else
- #define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
- #endif // __CUDACC__
- #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
- #ifndef NDEBUG
- # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
- #elif defined(__GNUC__)
- # define GGML_UNREACHABLE() __builtin_unreachable()
- #elif defined(_MSC_VER)
- # define GGML_UNREACHABLE() __assume(0)
- #else
- # define GGML_UNREACHABLE() ((void) 0)
- #endif
- #ifdef __cplusplus
- # define GGML_NORETURN [[noreturn]]
- #elif defined(_MSC_VER)
- # define GGML_NORETURN __declspec(noreturn)
- #else
- # define GGML_NORETURN _Noreturn
- #endif
- #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
- #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
- // used to copy the number of elements and stride in bytes of tensors into local variables.
- // main purpose is to reduce code duplication and improve readability.
- //
- // example:
- //
- // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
- //
- #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
- const type prefix##0 = (pointer) ? (pointer)->array[0] : 0; \
- GGML_UNUSED(prefix##0);
- #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
- const type prefix##1 = (pointer) ? (pointer)->array[1] : 0; \
- GGML_UNUSED(prefix##1);
- #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
- const type prefix##2 = (pointer) ? (pointer)->array[2] : 0; \
- GGML_UNUSED(prefix##2);
- #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
- const type prefix##3 = (pointer) ? (pointer)->array[3] : 0; \
- GGML_UNUSED(prefix##3);
- #define GGML_TENSOR_UNARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- #define GGML_TENSOR_BINARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- #define GGML_TENSOR_TERNARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
- GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- #define GGML_TENSOR_BINARY_OP_LOCALS01 \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
- #ifdef __cplusplus
- extern "C" {
- #endif
- // Function type used in fatal error callbacks
- typedef void (*ggml_abort_callback_t)(const char * error_message);
- // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
- // Returns the old callback for chaining
- GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
- GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
- GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
- enum ggml_status {
- GGML_STATUS_ALLOC_FAILED = -2,
- GGML_STATUS_FAILED = -1,
- GGML_STATUS_SUCCESS = 0,
- GGML_STATUS_ABORTED = 1,
- };
- // get ggml_status name string
- GGML_API const char * ggml_status_to_string(enum ggml_status status);
- // ieee 754-2008 half-precision float16
- // todo: make this not an integral type
- typedef uint16_t ggml_fp16_t;
- GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
- GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
- GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
- GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
- // google brain half-precision bfloat16
- typedef struct { uint16_t bits; } ggml_bf16_t;
- GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
- GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
- GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
- GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
- GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
- struct ggml_object;
- struct ggml_context;
- struct ggml_cgraph;
- // NOTE: always add types at the end of the enum to keep backward compatibility
- enum ggml_type {
- GGML_TYPE_F32 = 0,
- GGML_TYPE_F16 = 1,
- GGML_TYPE_Q4_0 = 2,
- GGML_TYPE_Q4_1 = 3,
- // GGML_TYPE_Q4_2 = 4, support has been removed
- // GGML_TYPE_Q4_3 = 5, support has been removed
- GGML_TYPE_Q5_0 = 6,
- GGML_TYPE_Q5_1 = 7,
- GGML_TYPE_Q8_0 = 8,
- GGML_TYPE_Q8_1 = 9,
- GGML_TYPE_Q2_K = 10,
- GGML_TYPE_Q3_K = 11,
- GGML_TYPE_Q4_K = 12,
- GGML_TYPE_Q5_K = 13,
- GGML_TYPE_Q6_K = 14,
- GGML_TYPE_Q8_K = 15,
- GGML_TYPE_IQ2_XXS = 16,
- GGML_TYPE_IQ2_XS = 17,
- GGML_TYPE_IQ3_XXS = 18,
- GGML_TYPE_IQ1_S = 19,
- GGML_TYPE_IQ4_NL = 20,
- GGML_TYPE_IQ3_S = 21,
- GGML_TYPE_IQ2_S = 22,
- GGML_TYPE_IQ4_XS = 23,
- GGML_TYPE_I8 = 24,
- GGML_TYPE_I16 = 25,
- GGML_TYPE_I32 = 26,
- GGML_TYPE_I64 = 27,
- GGML_TYPE_F64 = 28,
- GGML_TYPE_IQ1_M = 29,
- GGML_TYPE_BF16 = 30,
- // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
- // GGML_TYPE_Q4_0_4_8 = 32,
- // GGML_TYPE_Q4_0_8_8 = 33,
- GGML_TYPE_TQ1_0 = 34,
- GGML_TYPE_TQ2_0 = 35,
- // GGML_TYPE_IQ4_NL_4_4 = 36,
- // GGML_TYPE_IQ4_NL_4_8 = 37,
- // GGML_TYPE_IQ4_NL_8_8 = 38,
- GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
- GGML_TYPE_COUNT = 40,
- };
- // precision
- enum ggml_prec {
- GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
- GGML_PREC_F32 = 10,
- };
- // model file types
- enum ggml_ftype {
- GGML_FTYPE_UNKNOWN = -1,
- GGML_FTYPE_ALL_F32 = 0,
- GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
- GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
- GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
- GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
- };
- // available tensor operations:
- enum ggml_op {
- GGML_OP_NONE = 0,
- GGML_OP_DUP,
- GGML_OP_ADD,
- GGML_OP_ADD_ID,
- GGML_OP_ADD1,
- GGML_OP_ACC,
- GGML_OP_SUB,
- GGML_OP_MUL,
- GGML_OP_DIV,
- GGML_OP_SQR,
- GGML_OP_SQRT,
- GGML_OP_LOG,
- GGML_OP_SIN,
- GGML_OP_COS,
- GGML_OP_SUM,
- GGML_OP_SUM_ROWS,
- GGML_OP_CUMSUM,
- GGML_OP_MEAN,
- GGML_OP_ARGMAX,
- GGML_OP_COUNT_EQUAL,
- GGML_OP_REPEAT,
- GGML_OP_REPEAT_BACK,
- GGML_OP_CONCAT,
- GGML_OP_SILU_BACK,
- GGML_OP_NORM, // normalize
- GGML_OP_RMS_NORM,
- GGML_OP_RMS_NORM_BACK,
- GGML_OP_GROUP_NORM,
- GGML_OP_L2_NORM,
- GGML_OP_MUL_MAT,
- GGML_OP_MUL_MAT_ID,
- GGML_OP_OUT_PROD,
- GGML_OP_SCALE,
- GGML_OP_SET,
- GGML_OP_CPY,
- GGML_OP_CONT,
- GGML_OP_RESHAPE,
- GGML_OP_VIEW,
- GGML_OP_PERMUTE,
- GGML_OP_TRANSPOSE,
- GGML_OP_GET_ROWS,
- GGML_OP_GET_ROWS_BACK,
- GGML_OP_SET_ROWS,
- GGML_OP_DIAG,
- GGML_OP_DIAG_MASK_INF,
- GGML_OP_DIAG_MASK_ZERO,
- GGML_OP_SOFT_MAX,
- GGML_OP_SOFT_MAX_BACK,
- GGML_OP_ROPE,
- GGML_OP_ROPE_BACK,
- GGML_OP_CLAMP,
- GGML_OP_CONV_TRANSPOSE_1D,
- GGML_OP_IM2COL,
- GGML_OP_IM2COL_BACK,
- GGML_OP_IM2COL_3D,
- GGML_OP_CONV_2D,
- GGML_OP_CONV_3D,
- GGML_OP_CONV_2D_DW,
- GGML_OP_CONV_TRANSPOSE_2D,
- GGML_OP_POOL_1D,
- GGML_OP_POOL_2D,
- GGML_OP_POOL_2D_BACK,
- GGML_OP_UPSCALE,
- GGML_OP_PAD,
- GGML_OP_PAD_REFLECT_1D,
- GGML_OP_ROLL,
- GGML_OP_ARANGE,
- GGML_OP_TIMESTEP_EMBEDDING,
- GGML_OP_ARGSORT,
- GGML_OP_LEAKY_RELU,
- GGML_OP_TRI,
- GGML_OP_FILL,
- GGML_OP_FLASH_ATTN_EXT,
- GGML_OP_FLASH_ATTN_BACK,
- GGML_OP_SSM_CONV,
- GGML_OP_SSM_SCAN,
- GGML_OP_WIN_PART,
- GGML_OP_WIN_UNPART,
- GGML_OP_GET_REL_POS,
- GGML_OP_ADD_REL_POS,
- GGML_OP_RWKV_WKV6,
- GGML_OP_GATED_LINEAR_ATTN,
- GGML_OP_RWKV_WKV7,
- GGML_OP_SOLVE_TRI,
- GGML_OP_UNARY,
- GGML_OP_MAP_CUSTOM1,
- GGML_OP_MAP_CUSTOM2,
- GGML_OP_MAP_CUSTOM3,
- GGML_OP_CUSTOM,
- GGML_OP_CROSS_ENTROPY_LOSS,
- GGML_OP_CROSS_ENTROPY_LOSS_BACK,
- GGML_OP_OPT_STEP_ADAMW,
- GGML_OP_OPT_STEP_SGD,
- GGML_OP_GLU,
- GGML_OP_COUNT,
- };
- enum ggml_unary_op {
- GGML_UNARY_OP_ABS,
- GGML_UNARY_OP_SGN,
- GGML_UNARY_OP_NEG,
- GGML_UNARY_OP_STEP,
- GGML_UNARY_OP_TANH,
- GGML_UNARY_OP_ELU,
- GGML_UNARY_OP_RELU,
- GGML_UNARY_OP_SIGMOID,
- GGML_UNARY_OP_GELU,
- GGML_UNARY_OP_GELU_QUICK,
- GGML_UNARY_OP_SILU,
- GGML_UNARY_OP_HARDSWISH,
- GGML_UNARY_OP_HARDSIGMOID,
- GGML_UNARY_OP_EXP,
- GGML_UNARY_OP_EXPM1,
- GGML_UNARY_OP_SOFTPLUS,
- GGML_UNARY_OP_GELU_ERF,
- GGML_UNARY_OP_XIELU,
- GGML_UNARY_OP_FLOOR,
- GGML_UNARY_OP_CEIL,
- GGML_UNARY_OP_ROUND,
- GGML_UNARY_OP_TRUNC,
- GGML_UNARY_OP_COUNT,
- };
- enum ggml_glu_op {
- GGML_GLU_OP_REGLU,
- GGML_GLU_OP_GEGLU,
- GGML_GLU_OP_SWIGLU,
- GGML_GLU_OP_SWIGLU_OAI,
- GGML_GLU_OP_GEGLU_ERF,
- GGML_GLU_OP_GEGLU_QUICK,
- GGML_GLU_OP_COUNT,
- };
- enum ggml_object_type {
- GGML_OBJECT_TYPE_TENSOR,
- GGML_OBJECT_TYPE_GRAPH,
- GGML_OBJECT_TYPE_WORK_BUFFER
- };
- enum ggml_log_level {
- GGML_LOG_LEVEL_NONE = 0,
- GGML_LOG_LEVEL_DEBUG = 1,
- GGML_LOG_LEVEL_INFO = 2,
- GGML_LOG_LEVEL_WARN = 3,
- GGML_LOG_LEVEL_ERROR = 4,
- GGML_LOG_LEVEL_CONT = 5, // continue previous log
- };
- // this tensor...
- enum ggml_tensor_flag {
- GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
- GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
- GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
- GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
- };
- enum ggml_tri_type {
- GGML_TRI_TYPE_UPPER_DIAG = 0,
- GGML_TRI_TYPE_UPPER = 1,
- GGML_TRI_TYPE_LOWER_DIAG = 2,
- GGML_TRI_TYPE_LOWER = 3
- };
- struct ggml_init_params {
- // memory pool
- size_t mem_size; // bytes
- void * mem_buffer; // if NULL, memory will be allocated internally
- bool no_alloc; // don't allocate memory for the tensor data
- };
- // n-dimensional tensor
- struct ggml_tensor {
- enum ggml_type type;
- struct ggml_backend_buffer * buffer;
- int64_t ne[GGML_MAX_DIMS]; // number of elements
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
- // nb[0] = ggml_type_size(type)
- // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
- // nb[i] = nb[i-1] * ne[i-1]
- // compute data
- enum ggml_op op;
- // op params - allocated as int32_t for alignment
- int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
- int32_t flags;
- struct ggml_tensor * src[GGML_MAX_SRC];
- // source tensor and offset for views
- struct ggml_tensor * view_src;
- size_t view_offs;
- void * data;
- char name[GGML_MAX_NAME];
- void * extra; // extra things e.g. for ggml-cuda.cu
- char padding[8];
- };
- static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
- // Abort callback
- // If not NULL, called before ggml computation
- // If it returns true, the computation is aborted
- typedef bool (*ggml_abort_callback)(void * data);
- //
- // GUID
- //
- // GUID types
- typedef uint8_t ggml_guid[16];
- typedef ggml_guid * ggml_guid_t;
- GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
- // misc
- GGML_API const char * ggml_version(void);
- GGML_API const char * ggml_commit(void);
- GGML_API void ggml_time_init(void); // call this once at the beginning of the program
- GGML_API int64_t ggml_time_ms(void);
- GGML_API int64_t ggml_time_us(void);
- GGML_API int64_t ggml_cycles(void);
- GGML_API int64_t ggml_cycles_per_ms(void);
- // accepts a UTF-8 path, even on Windows
- GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
- GGML_API void ggml_print_object (const struct ggml_object * obj);
- GGML_API void ggml_print_objects(const struct ggml_context * ctx);
- GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
- GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
- GGML_API int64_t ggml_blck_size(enum ggml_type type);
- GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
- GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
- GGML_DEPRECATED(
- GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
- "use ggml_row_size() instead");
- GGML_API const char * ggml_type_name(enum ggml_type type);
- GGML_API const char * ggml_op_name (enum ggml_op op);
- GGML_API const char * ggml_op_symbol(enum ggml_op op);
- GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
- GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
- GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
- GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_quantized(enum ggml_type type);
- // TODO: temporary until model loading of ggml examples is refactored
- GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
- GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
- GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
- // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
- GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
- GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
- GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
- // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
- GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
- // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
- GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
- // true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
- GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
- GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- // use this to compute the memory overhead of a tensor
- GGML_API size_t ggml_tensor_overhead(void);
- GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
- // main
- GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
- GGML_API void ggml_reset(struct ggml_context * ctx);
- GGML_API void ggml_free (struct ggml_context * ctx);
- GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
- GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
- GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
- GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
- GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
- GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
- GGML_API struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t *ne);
- GGML_API struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1);
- GGML_API struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
- GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
- GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
- // Context tensor enumeration and lookup
- GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
- GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
- GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
- // Converts a flat index into coordinates
- GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
- GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
- GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
- GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
- GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
- GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
- GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
- GGML_ATTRIBUTE_FORMAT(2, 3)
- GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
- // Tensor flags
- GGML_API void ggml_set_input(struct ggml_tensor * tensor);
- GGML_API void ggml_set_output(struct ggml_tensor * tensor);
- GGML_API void ggml_set_param(struct ggml_tensor * tensor);
- GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
- //
- // operations on tensors with backpropagation
- //
- GGML_API struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type);
- // dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
- GGML_API struct ggml_tensor * ggml_add_id(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * ids);
- GGML_API struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // dst = a
- // view(dst, nb1, nb2, nb3, offset) += b
- // return dst
- GGML_API struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_expm1(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_expm1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_softplus(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_softplus_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sin(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sin_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_cos(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_cos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // return scalar
- GGML_API struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
- GGML_API struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_cumsum(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // mean along rows
- GGML_API struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // argmax along rows
- GGML_API struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // count number of equal elements in a and b
- GGML_API struct ggml_tensor * ggml_count_equal(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // if a is the same shape as b, and a is not parameter, return a
- // otherwise, return a new tensor: repeat(a) to fit in b
- GGML_API struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // repeat a to the specified shape
- GGML_API struct ggml_tensor * ggml_repeat_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // sums repetitions in a into shape of b
- GGML_API struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
- // concat a and b along dim
- // used in stable-diffusion
- GGML_API struct ggml_tensor * ggml_concat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int dim);
- GGML_API struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_leaky_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a, float negative_slope, bool inplace);
- GGML_API struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // GELU using erf (error function) when possible
- // some backends may fallback to approximation based on Abramowitz and Stegun formula
- GGML_API struct ggml_tensor * ggml_gelu_erf(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // a - x
- // b - dy
- GGML_API struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // hardswish(x) = x * relu6(x + 3) / 6
- GGML_API struct ggml_tensor * ggml_hardswish(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // hardsigmoid(x) = relu6(x + 3) / 6
- GGML_API struct ggml_tensor * ggml_hardsigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_exp(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_exp_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_floor(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_floor_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_ceil(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_ceil_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_round(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_round_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- /**
- * Truncates the fractional part of each element in the tensor (towards zero).
- * For example: trunc(3.7) = 3.0, trunc(-2.9) = -2.0
- * Similar to std::trunc in C/C++.
- */
- GGML_API struct ggml_tensor * ggml_trunc(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_trunc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // xIELU activation function
- // x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
- // where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
- // that constrain the positive and negative source alpha values respectively
- GGML_API struct ggml_tensor * ggml_xielu(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float alpha_n,
- float alpha_p,
- float beta,
- float eps);
- // gated linear unit ops
- // A: n columns, r rows,
- // result is n / 2 columns, r rows,
- // expects gate in second half of row, unless swapped is true
- GGML_API struct ggml_tensor * ggml_glu(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_glu_op op,
- bool swapped);
- GGML_API struct ggml_tensor * ggml_reglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_reglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_swiglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_swiglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_erf(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // A: n columns, r rows,
- // B: n columns, r rows,
- GGML_API struct ggml_tensor * ggml_glu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_glu_op op);
- GGML_API struct ggml_tensor * ggml_reglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_geglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_swiglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_geglu_erf_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_geglu_quick_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_swiglu_oai(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float alpha,
- float limit);
- // normalize along rows
- GGML_API struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- // group normalize along ne0*ne1*n_groups
- // used in stable-diffusion
- GGML_API struct ggml_tensor * ggml_group_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps);
- GGML_API struct ggml_tensor * ggml_group_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps);
- // l2 normalize along rows
- // used in rwkv v7
- GGML_API struct ggml_tensor * ggml_l2_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- // a - x
- // b - dy
- GGML_API struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float eps);
- // A: k columns, n rows => [ne03, ne02, n, k]
- // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
- // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
- GGML_API struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // change the precision of a matrix multiplication
- // set to GGML_PREC_F32 for higher precision (useful for phi-2)
- GGML_API void ggml_mul_mat_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec);
- // indirect matrix multiplication
- GGML_API struct ggml_tensor * ggml_mul_mat_id(
- struct ggml_context * ctx,
- struct ggml_tensor * as,
- struct ggml_tensor * b,
- struct ggml_tensor * ids);
- // A: m columns, n rows,
- // B: p columns, n rows,
- // result is m columns, p rows
- GGML_API struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- //
- // operations on tensors without backpropagation
- //
- GGML_API struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s);
- // x = s * a + b
- GGML_API struct ggml_tensor * ggml_scale_bias(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- float b);
- GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- float b);
- // b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset); // in bytes
- GGML_API struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset); // in bytes
- GGML_API struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset); // in bytes
- // a -> b, return view(b)
- GGML_API struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // note: casting from f32 to i32 will discard the fractional part
- GGML_API struct ggml_tensor * ggml_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_type type);
- // make contiguous
- GGML_API struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // make contiguous, with new shape
- GGML_API struct ggml_tensor * ggml_cont_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_cont_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1);
- GGML_API struct ggml_tensor * ggml_cont_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_cont_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // return view(a), b specifies the new shape
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // offset in bytes
- GGML_API struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1, // row stride in bytes
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3);
- // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
- GGML_API struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // supports 4D a:
- // a [n_embd, ne1, ne2, ne3]
- // b I32 [n_rows, ne2, ne3, 1]
- //
- // return [n_embd, n_rows, ne2, ne3]
- GGML_API struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // data
- struct ggml_tensor * b); // row indices
- GGML_API struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // gradients of ggml_get_rows result
- struct ggml_tensor * b, // row indices
- struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
- // a TD [n_embd, ne1, ne2, ne3]
- // b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
- // c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
- //
- // undefined behavior if destination rows overlap
- //
- // broadcast:
- // ne2 % ne11 == 0
- // ne3 % ne12 == 0
- //
- // return view(a)
- GGML_API struct ggml_tensor * ggml_set_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // destination
- struct ggml_tensor * b, // source
- struct ggml_tensor * c); // row indices
- GGML_API struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // set elements above the diagonal to -INF
- GGML_API struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // set elements above the diagonal to 0
- GGML_API struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- GGML_API struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // a [ne0, ne01, ne02, ne03]
- // mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
- //
- // broadcast:
- // ne02 % ne12 == 0
- // ne03 % ne13 == 0
- //
- // fused soft_max(a*scale + mask*(ALiBi slope))
- // max_bias = 0.0f for no ALiBi
- GGML_API struct ggml_tensor * ggml_soft_max_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- float max_bias);
- GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- float max_bias);
- GGML_API void ggml_soft_max_add_sinks(
- struct ggml_tensor * a,
- struct ggml_tensor * sinks);
- GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float scale,
- float max_bias);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float scale,
- float max_bias);
- // rotary position embedding
- // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
- // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
- //
- // b is an int32 vector with size a->ne[2], it contains the positions
- GGML_API struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode);
- // custom RoPE
- // c is freq factors (e.g. phi3-128k), (optional)
- GGML_API struct ggml_tensor * ggml_rope_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_API struct ggml_tensor * ggml_rope_multi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[GGML_MROPE_SECTIONS],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[GGML_MROPE_SECTIONS],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow),
- "use ggml_rope_ext instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow),
- "use ggml_rope_ext_inplace instead");
- // compute correction dims for YaRN RoPE scaling
- GGML_API void ggml_rope_yarn_corr_dims(
- int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
- // rotary position embedding backward, i.e compute dx from dy
- // a - dy
- GGML_API struct ggml_tensor * ggml_rope_ext_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // gradients of ggml_rope result
- struct ggml_tensor * b, // positions
- struct ggml_tensor * c, // freq factors
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_API struct ggml_tensor * ggml_rope_multi_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[4],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- // clamp
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max);
- // im2col
- // converts data into a format that effectively results in a convolution when combined with matrix multiplication
- GGML_API struct ggml_tensor * ggml_im2col(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1, // dilation dimension 1
- bool is_2D,
- enum ggml_type dst_type);
- GGML_API struct ggml_tensor * ggml_im2col_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // gradient of im2col output
- int64_t * ne, // shape of im2col input
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1, // dilation dimension 1
- bool is_2D);
- GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- // conv_1d with padding = half
- // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
- GGML_API struct ggml_tensor* ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s, // stride
- int d); // dilation
- // depthwise
- // TODO: this is very likely wrong for some cases! - needs more testing
- GGML_API struct ggml_tensor * ggml_conv_1d_dw(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1); // dilation dimension 1
- GGML_API struct ggml_tensor * ggml_im2col_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int64_t IC,
- int s0, // stride width
- int s1, // stride height
- int s2, // stride depth
- int p0, // padding width
- int p1, // padding height
- int p2, // padding depth
- int d0, // dilation width
- int d1, // dilation height
- int d2, // dilation depth
- enum ggml_type dst_type);
- // a: [OC*IC, KD, KH, KW]
- // b: [N*IC, ID, IH, IW]
- // result: [N*OC, OD, OH, OW]
- GGML_API struct ggml_tensor * ggml_conv_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int64_t IC,
- int s0, // stride width
- int s1, // stride height
- int s2, // stride depth
- int p0, // padding width
- int p1, // padding height
- int p2, // padding depth
- int d0, // dilation width
- int d1, // dilation height
- int d2 // dilation depth
- );
- // kernel size is a->ne[0] x a->ne[1]
- // stride is equal to kernel size
- // padding is zero
- // example:
- // a: 16 16 3 768
- // b: 1024 1024 3 1
- // res: 64 64 768 1
- // used in sam
- GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // kernel size is a->ne[0] x a->ne[1]
- // stride is 1
- // padding is half
- // example:
- // a: 3 3 256 256
- // b: 64 64 256 1
- // res: 64 64 256 1
- // used in sam
- GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // depthwise (via im2col and mul_mat)
- GGML_API struct ggml_tensor * ggml_conv_2d_dw(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1); // dilation dimension 1
- // Depthwise 2D convolution
- // may be faster than ggml_conv_2d_dw, but not available in all backends
- // a: KW KH 1 C convolution kernel
- // b: W H C N input data
- // res: W_out H_out C N
- GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride0,
- int stride1,
- int pad0,
- int pad1,
- int dilation0,
- int dilation1);
- GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride);
- GGML_API struct ggml_tensor * ggml_conv_2d_direct(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
- struct ggml_tensor * b, // input data [W, H, C, N]
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1); // dilation dimension 1
- GGML_API struct ggml_tensor * ggml_conv_3d_direct(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
- struct ggml_tensor * b, // input [W, H, D, C * N]
- int s0, // stride
- int s1,
- int s2,
- int p0, // padding
- int p1,
- int p2,
- int d0, // dilation
- int d1,
- int d2,
- int n_channels,
- int n_batch,
- int n_channels_out);
- enum ggml_op_pool {
- GGML_OP_POOL_MAX,
- GGML_OP_POOL_AVG,
- GGML_OP_POOL_COUNT,
- };
- GGML_API struct ggml_tensor * ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0, // kernel size
- int s0, // stride
- int p0); // padding
- // the result will have 2*p0 padding for the first dimension
- // and 2*p1 padding for the second dimension
- GGML_API struct ggml_tensor * ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1);
- GGML_API struct ggml_tensor * ggml_pool_2d_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * af, // "a"/input used in forward pass
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1);
- enum ggml_scale_mode {
- GGML_SCALE_MODE_NEAREST = 0,
- GGML_SCALE_MODE_BILINEAR = 1,
- GGML_SCALE_MODE_BICUBIC = 2,
- GGML_SCALE_MODE_COUNT
- };
- enum ggml_scale_flag {
- GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
- };
- // interpolate
- // multiplies ne0 and ne1 by scale factor
- GGML_API struct ggml_tensor * ggml_upscale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor,
- enum ggml_scale_mode mode);
- // interpolate
- // interpolate scale to specified dimensions
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1,
- int ne2,
- int ne3,
- enum ggml_scale_mode mode),
- "use ggml_interpolate instead");
- // Up- or downsamples the input to the specified size.
- // 2D scale modes (eg. bilinear) are applied to the first two dimensions.
- GGML_API struct ggml_tensor * ggml_interpolate(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
- // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
- GGML_API struct ggml_tensor * ggml_pad(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1,
- int p2,
- int p3);
- GGML_API struct ggml_tensor * ggml_pad_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int lp0,
- int rp0,
- int lp1,
- int rp1,
- int lp2,
- int rp2,
- int lp3,
- int rp3
- );
- // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
- GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1);
- // Move tensor elements by an offset given for each dimension. Elements that
- // are shifted beyond the last position are wrapped around to the beginning.
- GGML_API struct ggml_tensor * ggml_roll(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int shift0,
- int shift1,
- int shift2,
- int shift3);
- // Convert matrix into a triangular one (upper, strict upper, lower or strict lower) by writing
- // zeroes everywhere outside the masked area
- GGML_API struct ggml_tensor * ggml_tri(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_tri_type type);
- // Fill tensor a with constant c
- GGML_API struct ggml_tensor * ggml_fill(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float c);
- GGML_API struct ggml_tensor * ggml_fill_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float c);
- // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
- // timesteps: [N,]
- // return: [N, dim]
- GGML_API struct ggml_tensor * ggml_timestep_embedding(
- struct ggml_context * ctx,
- struct ggml_tensor * timesteps,
- int dim,
- int max_period);
- // sort rows
- enum ggml_sort_order {
- GGML_SORT_ORDER_ASC,
- GGML_SORT_ORDER_DESC,
- };
- GGML_API struct ggml_tensor * ggml_argsort(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_sort_order order);
- GGML_API struct ggml_tensor * ggml_arange(
- struct ggml_context * ctx,
- float start,
- float stop,
- float step);
- // top k elements per row
- GGML_API struct ggml_tensor * ggml_top_k(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int k);
- #define GGML_KQ_MASK_PAD 64
- // q: [n_embd_k, n_batch, n_head, ne3 ]
- // k: [n_embd_k, n_kv, n_head_kv, ne3 ]
- // v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
- // mask: [n_kv, n_batch_pad, ne32, ne33] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
- // res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
- //
- // broadcast:
- // n_head % n_head_kv == 0
- // n_head % ne32 == 0
- // ne3 % ne33 == 0
- //
- GGML_API struct ggml_tensor * ggml_flash_attn_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * mask,
- float scale,
- float max_bias,
- float logit_softcap);
- GGML_API void ggml_flash_attn_ext_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec);
- GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
- const struct ggml_tensor * a);
- GGML_API void ggml_flash_attn_ext_add_sinks(
- struct ggml_tensor * a,
- struct ggml_tensor * sinks);
- // TODO: needs to be adapted to ggml_flash_attn_ext
- GGML_API struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked);
- GGML_API struct ggml_tensor * ggml_ssm_conv(
- struct ggml_context * ctx,
- struct ggml_tensor * sx,
- struct ggml_tensor * c);
- GGML_API struct ggml_tensor * ggml_ssm_scan(
- struct ggml_context * ctx,
- struct ggml_tensor * s,
- struct ggml_tensor * x,
- struct ggml_tensor * dt,
- struct ggml_tensor * A,
- struct ggml_tensor * B,
- struct ggml_tensor * C,
- struct ggml_tensor * ids);
- // partition into non-overlapping windows with padding if needed
- // example:
- // a: 768 64 64 1
- // w: 14
- // res: 768 14 14 25
- // used in sam
- GGML_API struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w);
- // reverse of ggml_win_part
- // used in sam
- GGML_API struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w);
- GGML_API struct ggml_tensor * ggml_unary(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op);
- GGML_API struct ggml_tensor * ggml_unary_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op);
- // used in sam
- GGML_API struct ggml_tensor * ggml_get_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int qh,
- int kh);
- // used in sam
- GGML_API struct ggml_tensor * ggml_add_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph);
- GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph);
- GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
- struct ggml_context * ctx,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * r,
- struct ggml_tensor * tf,
- struct ggml_tensor * td,
- struct ggml_tensor * state);
- GGML_API struct ggml_tensor * ggml_gated_linear_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * q,
- struct ggml_tensor * g,
- struct ggml_tensor * state,
- float scale);
- GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
- struct ggml_context * ctx,
- struct ggml_tensor * r,
- struct ggml_tensor * w,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * state);
- /* Solves a specific equation of the form Ax=B, where A is a triangular matrix
- * without zeroes on the diagonal (i.e. invertible).
- * B can have any number of columns, but must have the same number of rows as A
- * If A is [n, n] and B is [n, m], then the result will be [n, m] as well
- * Has O(n^3) complexity (unlike most matrix ops out there), so use on cases
- * where n > 100 sparingly, pre-chunk if necessary.
- *
- * If left = false, solves xA=B instead
- * If lower = false, assumes upper triangular instead
- * If uni = true, assumes diagonal of A to be all ones (will override actual values)
- *
- * TODO: currently only lower, right, non-unitriangular variant is implemented
- */
- GGML_API struct ggml_tensor * ggml_solve_tri(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool left,
- bool lower,
- bool uni);
- // custom operators
- typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
- typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
- typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
- #define GGML_N_TASKS_MAX (-1)
- // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
- GGML_API struct ggml_tensor * ggml_map_custom1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom2(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom3(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata);
- typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
- GGML_API struct ggml_tensor * ggml_custom_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- struct ggml_tensor ** args,
- int n_args,
- ggml_custom_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor ** args,
- int n_args,
- ggml_custom_op_t fun,
- int n_tasks,
- void * userdata);
- // loss function
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // logits
- struct ggml_tensor * b); // labels
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // logits
- struct ggml_tensor * b, // labels
- struct ggml_tensor * c); // gradients of cross_entropy_loss result
- // AdamW optimizer step
- // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
- // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
- GGML_API struct ggml_tensor * ggml_opt_step_adamw(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * grad,
- struct ggml_tensor * m,
- struct ggml_tensor * v,
- struct ggml_tensor * adamw_params); // parameters such as the learning rate
- // stochastic gradient descent step (with weight decay)
- GGML_API struct ggml_tensor * ggml_opt_step_sgd(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * grad,
- struct ggml_tensor * sgd_params); // alpha, weight decay
- //
- // automatic differentiation
- //
- GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
- GGML_API void ggml_build_backward_expand(
- struct ggml_context * ctx, // context for gradient computation
- struct ggml_cgraph * cgraph,
- struct ggml_tensor ** grad_accs);
- // graph allocation in a context
- GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
- GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
- GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
- GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
- GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
- GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
- GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
- GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
- GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
- GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
- GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
- GGML_API size_t ggml_graph_overhead(void);
- GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
- GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
- GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
- GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
- // print info and performance information for the graph
- GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
- // dump the graph into a file using the dot format
- GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
- // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
- typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
- // Set callback for all future logging events.
- // If this is not called, or NULL is supplied, everything is output on stderr.
- GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
- GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
- //
- // quantization
- //
- // - ggml_quantize_init can be called multiple times with the same type
- // it will only initialize the quantization tables for the first call or after ggml_quantize_free
- // automatically called by ggml_quantize_chunk for convenience
- //
- // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
- // call this at the end of the program to avoid memory leaks
- //
- // note: these are thread-safe
- //
- GGML_API void ggml_quantize_init(enum ggml_type type);
- GGML_API void ggml_quantize_free(void);
- // some quantization type cannot be used without an importance matrix
- GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
- // calls ggml_quantize_init internally (i.e. can allocate memory)
- GGML_API size_t ggml_quantize_chunk(
- enum ggml_type type,
- const float * src,
- void * dst,
- int64_t start,
- int64_t nrows,
- int64_t n_per_row,
- const float * imatrix);
- #ifdef __cplusplus
- // restrict not standard in C++
- # if defined(__GNUC__)
- # define GGML_RESTRICT __restrict__
- # elif defined(__clang__)
- # define GGML_RESTRICT __restrict
- # elif defined(_MSC_VER)
- # define GGML_RESTRICT __restrict
- # else
- # define GGML_RESTRICT
- # endif
- #else
- # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
- # define GGML_RESTRICT __restrict
- # else
- # define GGML_RESTRICT restrict
- # endif
- #endif
- typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
- typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
- struct ggml_type_traits {
- const char * type_name;
- int64_t blck_size;
- int64_t blck_size_interleave; // interleave elements in blocks
- size_t type_size;
- bool is_quantized;
- ggml_to_float_t to_float;
- ggml_from_float_t from_float_ref;
- };
- GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
- // ggml threadpool
- // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
- // the goal should be to create an API that other backends can use move everything to the ggml base
- // scheduling priorities
- enum ggml_sched_priority {
- GGML_SCHED_PRIO_LOW = -1,
- GGML_SCHED_PRIO_NORMAL,
- GGML_SCHED_PRIO_MEDIUM,
- GGML_SCHED_PRIO_HIGH,
- GGML_SCHED_PRIO_REALTIME
- };
- // threadpool params
- // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
- struct ggml_threadpool_params {
- bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
- int n_threads; // number of threads
- enum ggml_sched_priority prio; // thread priority
- uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
- bool strict_cpu; // strict cpu placement
- bool paused; // start in paused state
- };
- struct ggml_threadpool; // forward declaration, see ggml.c
- typedef struct ggml_threadpool * ggml_threadpool_t;
- GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
- GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
- GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
- #ifdef __cplusplus
- }
- #endif
|