llama-graph.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. #pragma once
  2. #include "llama-arch.h"
  3. #include "llama-batch.h"
  4. #include "llama-hparams.h"
  5. #include "llama-adapter.h"
  6. #include <cstdint>
  7. #include <vector>
  8. #include <memory>
  9. #include <set>
  10. #include <functional>
  11. struct ggml_cgraph;
  12. struct ggml_context;
  13. struct ggml_tensor;
  14. struct llama_cparams;
  15. struct llama_memory_context_i;
  16. class llama_kv_cache_context;
  17. class llama_kv_cache_iswa_context;
  18. class llama_memory_recurrent_context;
  19. class llama_memory_hybrid_context;
  20. // certain models (typically multi-modal) can produce different types of graphs
  21. enum llm_graph_type {
  22. LLM_GRAPH_TYPE_DEFAULT,
  23. LLM_GRAPH_TYPE_ENCODER,
  24. LLM_GRAPH_TYPE_DECODER,
  25. };
  26. enum llm_ffn_op_type {
  27. LLM_FFN_SILU,
  28. LLM_FFN_GELU,
  29. LLM_FFN_RELU,
  30. LLM_FFN_RELU_SQR,
  31. LLM_FFN_SWIGLU,
  32. LLM_FFN_GEGLU,
  33. LLM_FFN_REGLU,
  34. LLM_FFN_SWIGLU_OAI_MOE,
  35. };
  36. enum llm_ffn_gate_type {
  37. LLM_FFN_SEQ,
  38. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  39. };
  40. enum llm_norm_type {
  41. LLM_NORM,
  42. LLM_NORM_RMS,
  43. LLM_NORM_GROUP,
  44. };
  45. // TODO: tmp - need something better to pass the data from the encoder to the decoder
  46. struct llama_cross {
  47. // the output embeddings from the encoder as a ggml tensor
  48. // TODO: this needs more work to be correct, for now copy the embeddings data to host memory
  49. // ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
  50. //ggml_tensor * t_embd = nullptr;
  51. int64_t n_embd = 0;
  52. int64_t n_enc = 0;
  53. // embeddings data copied to host memory (tmp)
  54. std::vector<float> v_embd;
  55. // needed to construct the cross-attention mask in the decoder
  56. std::vector<std::set<llama_seq_id>> seq_ids_enc;
  57. };
  58. struct llm_graph_params;
  59. //
  60. // llm_graph_input
  61. //
  62. class llm_graph_input_i {
  63. public:
  64. llm_graph_input_i() {
  65. const char * LLAMA_GRAPH_INPUT_DEBUG = getenv("LLAMA_GRAPH_INPUT_DEBUG");
  66. debug = LLAMA_GRAPH_INPUT_DEBUG ? atoi(LLAMA_GRAPH_INPUT_DEBUG) : 0;
  67. }
  68. virtual ~llm_graph_input_i() = default;
  69. virtual void set_input(const llama_ubatch * ubatch) = 0;
  70. // return true if the resulting input tensors using the provided graph parameters would be
  71. // the same as the previous input tensors that we have currently stored in the object
  72. virtual bool can_reuse(const llm_graph_params & params) {
  73. // returning false here by default will prevent from reusing the graph if the check
  74. // for the input type has not been implemented yet
  75. GGML_UNUSED(params);
  76. return false;
  77. }
  78. protected:
  79. // env: LLAMA_GRAPH_INPUT_DEBUG
  80. int debug = 0;
  81. };
  82. using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
  83. class llm_graph_input_embd : public llm_graph_input_i {
  84. public:
  85. llm_graph_input_embd() = default;
  86. virtual ~llm_graph_input_embd() = default;
  87. void set_input(const llama_ubatch * ubatch) override;
  88. bool can_reuse(const llm_graph_params & params) override;
  89. ggml_tensor * tokens = nullptr; // I32 [n_batch]
  90. ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
  91. };
  92. class llm_graph_input_pos : public llm_graph_input_i {
  93. public:
  94. llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
  95. virtual ~llm_graph_input_pos() = default;
  96. void set_input(const llama_ubatch * ubatch) override;
  97. bool can_reuse(const llm_graph_params & params) override;
  98. ggml_tensor * pos = nullptr; // I32 [n_batch]
  99. const uint32_t n_pos_per_embd = 1;
  100. };
  101. // temperature tuning, used by llama4
  102. class llm_graph_input_attn_temp : public llm_graph_input_i {
  103. public:
  104. llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
  105. : n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
  106. virtual ~llm_graph_input_attn_temp() = default;
  107. void set_input(const llama_ubatch * ubatch) override;
  108. ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
  109. const uint32_t n_attn_temp_floor_scale;
  110. const float f_attn_temp_scale;
  111. };
  112. class llm_graph_input_pos_bucket : public llm_graph_input_i {
  113. public:
  114. llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
  115. virtual ~llm_graph_input_pos_bucket() = default;
  116. void set_input(const llama_ubatch * ubatch) override;
  117. ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]
  118. const llama_hparams hparams;
  119. };
  120. class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
  121. public:
  122. llm_graph_input_pos_bucket_kv(
  123. const llama_hparams & hparams,
  124. const llama_kv_cache_context * mctx) : hparams(hparams), mctx(mctx) {}
  125. virtual ~llm_graph_input_pos_bucket_kv() = default;
  126. void set_input(const llama_ubatch * ubatch) override;
  127. ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
  128. const llama_hparams hparams;
  129. const llama_kv_cache_context * mctx;
  130. };
  131. class llm_graph_input_out_ids : public llm_graph_input_i {
  132. public:
  133. llm_graph_input_out_ids(
  134. const llama_hparams & hparams,
  135. const llama_cparams & cparams,
  136. uint32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
  137. virtual ~llm_graph_input_out_ids() = default;
  138. void set_input(const llama_ubatch * ubatch) override;
  139. bool can_reuse(const llm_graph_params & params) override;
  140. ggml_tensor * out_ids; // I32 [n_outputs]
  141. const llama_hparams hparams;
  142. const llama_cparams cparams;
  143. const uint32_t n_outputs;
  144. };
  145. class llm_graph_input_mean : public llm_graph_input_i {
  146. public:
  147. llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
  148. virtual ~llm_graph_input_mean() = default;
  149. void set_input(const llama_ubatch * ubatch) override;
  150. ggml_tensor * mean; // F32 [n_batch, n_batch]
  151. const llama_cparams cparams;
  152. };
  153. class llm_graph_input_cls : public llm_graph_input_i {
  154. public:
  155. llm_graph_input_cls(const llama_cparams & cparams, const llm_arch arch) : cparams(cparams), arch(arch) {}
  156. virtual ~llm_graph_input_cls() = default;
  157. void set_input(const llama_ubatch * ubatch) override;
  158. ggml_tensor * cls; // I32 [n_batch]
  159. const llama_cparams cparams;
  160. const llm_arch arch;
  161. };
  162. class llm_graph_input_rs : public llm_graph_input_i {
  163. public:
  164. llm_graph_input_rs(const llama_memory_recurrent_context * mctx) : mctx(mctx) {}
  165. virtual ~llm_graph_input_rs() = default;
  166. void set_input(const llama_ubatch * ubatch) override;
  167. ggml_tensor * s_copy; // I32 [n_rs]
  168. // views of s_copy, computed once per graph
  169. // and shared across layers which use build_rs
  170. ggml_tensor * s_copy_main; // I32 [n_seqs]
  171. ggml_tensor * s_copy_extra; // I32 [n_rs - n_seqs]
  172. const llama_memory_recurrent_context * mctx;
  173. };
  174. class llm_graph_input_cross_embd : public llm_graph_input_i {
  175. public:
  176. llm_graph_input_cross_embd(
  177. const llama_cross * cross) : cross(cross) {}
  178. virtual ~llm_graph_input_cross_embd() = default;
  179. void set_input(const llama_ubatch * ubatch) override;
  180. ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]
  181. const llama_cross * cross;
  182. };
  183. class llm_graph_input_attn_no_cache : public llm_graph_input_i {
  184. public:
  185. llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
  186. hparams(hparams),
  187. cparams(cparams) {
  188. }
  189. ~llm_graph_input_attn_no_cache() = default;
  190. void set_input(const llama_ubatch * ubatch) override;
  191. ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
  192. ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
  193. // n_tokens == n_batch
  194. ggml_tensor * self_kq_mask = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
  195. ggml_tensor * self_kq_mask_cnv = nullptr; // [n_tokens, n_batch/n_stream, 1, n_stream]
  196. ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
  197. ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_tokens, n_batch/n_stream, 1, n_stream]
  198. const llama_hparams hparams;
  199. const llama_cparams cparams;
  200. };
  201. class llm_graph_input_attn_kv : public llm_graph_input_i {
  202. public:
  203. llm_graph_input_attn_kv(
  204. const llama_hparams & hparams,
  205. const llama_cparams & cparams,
  206. const llama_kv_cache_context * mctx) :
  207. hparams(hparams),
  208. cparams(cparams),
  209. mctx(mctx) {
  210. }
  211. ~llm_graph_input_attn_kv() = default;
  212. void set_input(const llama_ubatch * ubatch) override;
  213. bool can_reuse(const llm_graph_params & params) override;
  214. ggml_tensor * get_k_idxs() const { return self_k_idxs; }
  215. ggml_tensor * get_v_idxs() const { return self_v_idxs; }
  216. ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
  217. ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
  218. ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
  219. ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
  220. ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
  221. // note: these have to be copies because in order to be able to reuse a graph, its inputs
  222. // need to carry these parameters with them. otherwise, they can point to freed
  223. // llm_graph_params from a previous batch, causing stack-use-after-return
  224. const llama_hparams hparams;
  225. const llama_cparams cparams;
  226. const llama_kv_cache_context * mctx;
  227. };
  228. class llm_graph_input_attn_kv_iswa : public llm_graph_input_i {
  229. public:
  230. llm_graph_input_attn_kv_iswa(
  231. const llama_hparams & hparams,
  232. const llama_cparams & cparams,
  233. const llama_kv_cache_iswa_context * mctx) :
  234. hparams(hparams),
  235. cparams(cparams),
  236. mctx(mctx) {
  237. }
  238. ~llm_graph_input_attn_kv_iswa() = default;
  239. void set_input(const llama_ubatch * ubatch) override;
  240. bool can_reuse(const llm_graph_params & params) override;
  241. ggml_tensor * get_k_idxs() const { return self_k_idxs; }
  242. ggml_tensor * get_v_idxs() const { return self_v_idxs; }
  243. ggml_tensor * get_k_idxs_swa() const { return self_k_idxs_swa; }
  244. ggml_tensor * get_v_idxs_swa() const { return self_v_idxs_swa; }
  245. ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
  246. ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
  247. ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
  248. ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
  249. ggml_tensor * self_k_idxs_swa = nullptr; // I64 [n_batch]
  250. ggml_tensor * self_v_idxs_swa = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
  251. ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
  252. ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
  253. ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
  254. ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
  255. const llama_hparams hparams;
  256. const llama_cparams cparams;
  257. const llama_kv_cache_iswa_context * mctx;
  258. };
  259. class llm_graph_input_attn_cross : public llm_graph_input_i {
  260. public:
  261. llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
  262. ~llm_graph_input_attn_cross() = default;
  263. void set_input(const llama_ubatch * ubatch) override;
  264. ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }
  265. ggml_tensor * cross_kq_mask = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
  266. ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
  267. const llama_cross * cross = nullptr;
  268. };
  269. class llm_graph_input_mem_hybrid : public llm_graph_input_i {
  270. public:
  271. llm_graph_input_mem_hybrid(
  272. std::unique_ptr<llm_graph_input_attn_kv> inp_attn,
  273. std::unique_ptr<llm_graph_input_rs> inp_rs,
  274. const llama_memory_hybrid_context * mctx) :
  275. inp_attn(std::move(inp_attn)),
  276. inp_rs(std::move(inp_rs)),
  277. mctx(mctx) { }
  278. virtual ~llm_graph_input_mem_hybrid() = default;
  279. void set_input(const llama_ubatch * ubatch) override;
  280. std::unique_ptr<llm_graph_input_attn_kv> inp_attn;
  281. std::unique_ptr<llm_graph_input_rs> inp_rs;
  282. llm_graph_input_attn_kv * get_attn() const { return inp_attn.get(); }
  283. llm_graph_input_rs * get_recr() const { return inp_rs.get(); }
  284. const llama_memory_hybrid_context * mctx;
  285. };
  286. //
  287. // llm_graph_result
  288. //
  289. // these objects deliver the result from the graph build process back to the llama_context
  290. // note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
  291. // specific data, by calling the set_inputs() method
  292. // along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
  293. // these are used by the llama_context to extact the relevant data, based on the compute parameters
  294. // callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  295. using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;
  296. class llm_graph_result;
  297. struct llm_graph_params {
  298. llm_arch arch = LLM_ARCH_UNKNOWN;
  299. llama_hparams hparams;
  300. llama_cparams cparams;
  301. llama_ubatch ubatch; // note: intentionally make a copy
  302. llm_graph_type gtype;
  303. ggml_backend_sched_t sched;
  304. ggml_backend_t backend_cpu;
  305. const llama_adapter_cvec * cvec;
  306. const llama_adapter_loras * loras;
  307. const llama_memory_context_i * mctx;
  308. const llama_cross * cross;
  309. uint32_t n_outputs;
  310. llm_graph_cb cb;
  311. llm_graph_result * res;
  312. // return true if the "other" params would result in a graph with the same topology as with the current params
  313. // having the same topology allows us to reuse the graph in some cases
  314. bool allow_reuse(const llm_graph_params & other) const {
  315. // first check the ubatch
  316. bool can_reuse_ubatch =
  317. ubatch.equal_seqs() == other.ubatch.equal_seqs() &&
  318. ubatch.n_tokens == other.ubatch.n_tokens &&
  319. ubatch.n_seq_tokens == other.ubatch.n_seq_tokens &&
  320. ubatch.n_seqs == other.ubatch.n_seqs &&
  321. ubatch.n_seqs_unq == other.ubatch.n_seqs_unq &&
  322. (
  323. (!ubatch.token && !other.ubatch.token) ||
  324. (!ubatch.embd && !other.ubatch.embd)
  325. );
  326. // when we split the batch using "equal_seqs" we have to verify that the participating sequences are the same
  327. // the reason is because the set of attention streams would be different for different sequences
  328. if (can_reuse_ubatch && ubatch.equal_seqs()) {
  329. if (!ubatch.data) {
  330. // if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and
  331. // therefore we cannot perform the sequence id check. normally should never happen
  332. can_reuse_ubatch = false;
  333. } else {
  334. for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
  335. can_reuse_ubatch &= ubatch.seq_id_unq[s] == other.ubatch.seq_id_unq[s];
  336. }
  337. }
  338. }
  339. if (!can_reuse_ubatch) {
  340. return false;
  341. }
  342. return
  343. cparams.embeddings == other.cparams.embeddings &&
  344. cparams.causal_attn == other.cparams.causal_attn &&
  345. arch == other.arch &&
  346. gtype == other.gtype &&
  347. cvec == other.cvec &&
  348. loras == other.loras &&
  349. cross == other.cross &&
  350. n_outputs == other.n_outputs;
  351. }
  352. };
  353. class llm_graph_result {
  354. public:
  355. llm_graph_result(int64_t max_nodes);
  356. virtual ~llm_graph_result() = default;
  357. ggml_tensor * get_tokens() const { return t_tokens; }
  358. ggml_tensor * get_logits() const { return t_logits; }
  359. ggml_tensor * get_embd() const { return t_embd; }
  360. ggml_tensor * get_embd_pooled() const { return t_embd_pooled; }
  361. ggml_cgraph * get_gf() const { return gf; }
  362. ggml_context * get_ctx() const { return ctx_compute.get(); }
  363. int64_t get_max_nodes() const;
  364. void reset();
  365. void set_inputs(const llama_ubatch * ubatch);
  366. // try to update the existing graph result using the new graph parameters in order to reuse it
  367. // this can only be done if we determine that the resulting graph using the new graph parameters
  368. // would be identical to the existing graph. in that case, we simply have to update the memory
  369. // contexts of the input tensors of the graph and we can reuse it for another computation
  370. // return true if the graph was updated and can be reused
  371. bool can_reuse(const llm_graph_params & params);
  372. llm_graph_input_i * add_input(llm_graph_input_ptr input);
  373. void set_params(const llm_graph_params & params);
  374. // important graph nodes
  375. ggml_tensor * t_tokens = nullptr;
  376. ggml_tensor * t_logits = nullptr;
  377. ggml_tensor * t_embd = nullptr;
  378. ggml_tensor * t_embd_pooled = nullptr;
  379. std::vector<llm_graph_input_ptr> inputs;
  380. ggml_context_ptr ctx_compute;
  381. // memory buffers used to evaluate the model
  382. std::vector<uint8_t> buf_compute_meta;
  383. ggml_cgraph * gf;
  384. int64_t max_nodes;
  385. private:
  386. // keep a copy of the previous graph parameters
  387. // we will use this to determine whether the graph can be reused by comparing them with the new parameters
  388. // note: these are updated after constructing the new graph
  389. llm_graph_params params;
  390. // env: LLAMA_GRAPH_RESULT_DEBUG
  391. int debug = 0;
  392. };
  393. using llm_graph_result_ptr = std::unique_ptr<llm_graph_result>;
  394. //
  395. // llm_graph_context
  396. //
  397. // used in build_rs to properly order writes and avoid unnecessary copies
  398. using llm_graph_get_rows_fn = std::function<ggml_tensor * (ggml_context *, ggml_tensor * states, ggml_tensor * ids)>;
  399. struct llm_graph_context {
  400. const llm_arch arch;
  401. const llama_hparams & hparams;
  402. const llama_cparams & cparams;
  403. const llama_ubatch & ubatch;
  404. const int64_t n_embd;
  405. const int64_t n_layer;
  406. const int64_t n_rot;
  407. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  408. const int64_t n_head;
  409. const int64_t n_head_kv;
  410. const int64_t n_embd_head_k;
  411. const int64_t n_embd_k_gqa;
  412. const int64_t n_embd_head_v;
  413. const int64_t n_embd_v_gqa;
  414. const int64_t n_expert;
  415. const int64_t n_expert_used;
  416. const float freq_base;
  417. const float freq_scale;
  418. const float ext_factor;
  419. const float attn_factor;
  420. const float beta_fast;
  421. const float beta_slow;
  422. const float norm_eps;
  423. const float norm_rms_eps;
  424. const int64_t n_tokens;
  425. const int64_t n_outputs;
  426. const int32_t n_ctx_orig; // yarn
  427. const enum llama_pooling_type pooling_type;
  428. const enum llama_rope_type rope_type;
  429. ggml_backend_sched_t sched;
  430. ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
  431. const llama_adapter_cvec * cvec;
  432. const llama_adapter_loras * loras;
  433. const llama_memory_context_i * mctx;
  434. const llama_cross * cross;
  435. const llm_graph_cb & cb_func;
  436. llm_graph_result * res;
  437. ggml_context * ctx0 = nullptr;
  438. ggml_cgraph * gf = nullptr;
  439. llm_graph_context(const llm_graph_params & params);
  440. virtual ~llm_graph_context() = default;
  441. void cb(ggml_tensor * cur, const char * name, int il) const;
  442. //
  443. // common
  444. //
  445. ggml_tensor * build_cvec(
  446. ggml_tensor * cur,
  447. int il) const;
  448. // do mat_mul, while optionally apply lora
  449. ggml_tensor * build_lora_mm(
  450. ggml_tensor * w,
  451. ggml_tensor * cur) const;
  452. // do mat_mul_id, while optionally apply lora
  453. ggml_tensor * build_lora_mm_id(
  454. ggml_tensor * w, // ggml_tensor * as
  455. ggml_tensor * cur, // ggml_tensor * b
  456. ggml_tensor * ids) const;
  457. ggml_tensor * build_norm(
  458. ggml_tensor * cur,
  459. ggml_tensor * mw,
  460. ggml_tensor * mb,
  461. llm_norm_type type,
  462. int il) const;
  463. ggml_tensor * build_ffn(
  464. ggml_tensor * cur,
  465. ggml_tensor * up,
  466. ggml_tensor * up_b,
  467. ggml_tensor * up_s,
  468. ggml_tensor * gate,
  469. ggml_tensor * gate_b,
  470. ggml_tensor * gate_s,
  471. ggml_tensor * down,
  472. ggml_tensor * down_b,
  473. ggml_tensor * down_s,
  474. ggml_tensor * act_scales,
  475. llm_ffn_op_type type_op,
  476. llm_ffn_gate_type type_gate,
  477. int il) const;
  478. // build MoE FFN without bias tensors
  479. ggml_tensor * build_moe_ffn(
  480. ggml_tensor * cur,
  481. ggml_tensor * gate_inp,
  482. ggml_tensor * up_exps,
  483. ggml_tensor * gate_exps,
  484. ggml_tensor * down_exps,
  485. ggml_tensor * exp_probs_b,
  486. int64_t n_expert,
  487. int64_t n_expert_used,
  488. llm_ffn_op_type type_op,
  489. bool norm_w,
  490. bool scale_w,
  491. float w_scale,
  492. llama_expert_gating_func_type gating_op,
  493. int il,
  494. ggml_tensor * probs_in = nullptr) const;
  495. ggml_tensor * build_moe_ffn(
  496. ggml_tensor * cur,
  497. ggml_tensor * gate_inp,
  498. ggml_tensor * gate_inp_b,
  499. ggml_tensor * up_exps,
  500. ggml_tensor * up_exps_b,
  501. ggml_tensor * gate_exps,
  502. ggml_tensor * gate_exps_b,
  503. ggml_tensor * down_exps,
  504. ggml_tensor * down_exps_b,
  505. ggml_tensor * exp_probs_b,
  506. int64_t n_expert,
  507. int64_t n_expert_used,
  508. llm_ffn_op_type type_op,
  509. bool norm_w,
  510. bool scale_w,
  511. float w_scale,
  512. llama_expert_gating_func_type gating_op,
  513. int il,
  514. ggml_tensor * probs_in = nullptr) const;
  515. //
  516. // inputs
  517. //
  518. ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
  519. ggml_tensor * build_inp_pos() const;
  520. ggml_tensor * build_inp_attn_scale() const;
  521. ggml_tensor * build_inp_out_ids() const;
  522. ggml_tensor * build_inp_mean() const;
  523. ggml_tensor * build_inp_cls() const;
  524. ggml_tensor * build_inp_cross_embd() const;
  525. ggml_tensor * build_inp_pos_bucket_enc() const;
  526. ggml_tensor * build_inp_pos_bucket_dec() const;
  527. ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;
  528. //
  529. // attention
  530. //
  531. ggml_tensor * build_attn_mha(
  532. ggml_tensor * q, // [n_embd_head_q, n_head_q, n_tokens]
  533. ggml_tensor * k, // [n_embd_head_k, n_head_k, n_tokens]
  534. ggml_tensor * v, // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false)
  535. ggml_tensor * kq_b,
  536. ggml_tensor * kq_mask,
  537. ggml_tensor * sinks, // [n_head_q]
  538. ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
  539. float kq_scale,
  540. int il) const;
  541. llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;
  542. ggml_tensor * build_attn(
  543. llm_graph_input_attn_no_cache * inp,
  544. ggml_tensor * wo,
  545. ggml_tensor * wo_b,
  546. ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
  547. ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
  548. ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
  549. ggml_tensor * kq_b,
  550. ggml_tensor * sinks, // [n_head_q]
  551. ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
  552. float kq_scale,
  553. int il) const;
  554. llm_graph_input_attn_kv * build_attn_inp_kv() const;
  555. ggml_tensor * build_attn(
  556. llm_graph_input_attn_kv * inp,
  557. ggml_tensor * wo,
  558. ggml_tensor * wo_b,
  559. ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
  560. ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
  561. ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
  562. ggml_tensor * kq_b,
  563. ggml_tensor * sinks, // [n_head_q]
  564. ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
  565. float kq_scale,
  566. int il) const;
  567. llm_graph_input_attn_kv_iswa * build_attn_inp_kv_iswa() const;
  568. // note: if k_cur or v_cur are not provided, they will not be stored in the memory
  569. ggml_tensor * build_attn(
  570. llm_graph_input_attn_kv_iswa * inp,
  571. ggml_tensor * wo,
  572. ggml_tensor * wo_b,
  573. ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
  574. ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] optional
  575. ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] optional
  576. ggml_tensor * kq_b,
  577. ggml_tensor * sinks, // [n_head_q]
  578. ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
  579. float kq_scale,
  580. int il) const;
  581. llm_graph_input_attn_cross * build_attn_inp_cross() const;
  582. ggml_tensor * build_attn(
  583. llm_graph_input_attn_cross * inp,
  584. ggml_tensor * wo,
  585. ggml_tensor * wo_b,
  586. ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
  587. ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
  588. ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
  589. ggml_tensor * kq_b,
  590. ggml_tensor * sinks, // [n_head_q]
  591. ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
  592. float kq_scale,
  593. int il) const;
  594. //
  595. // recurrent
  596. //
  597. // TODO: move this implementation to llama_memory_recurrent.
  598. // this is analogous to llama_kv_cache::cpy_k / cpy_v
  599. // when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
  600. // implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in
  601. // `llama_memory_recurrent`
  602. ggml_tensor * build_rs(
  603. ggml_tensor * s,
  604. ggml_tensor * state_copy_main,
  605. ggml_tensor * state_copy_extra,
  606. int32_t state_size,
  607. int32_t n_seqs,
  608. uint32_t n_rs,
  609. uint32_t rs_head,
  610. uint32_t rs_size,
  611. int32_t rs_zero,
  612. const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
  613. llm_graph_input_rs * build_rs_inp() const;
  614. ggml_tensor * build_rs(
  615. llm_graph_input_rs * inp,
  616. ggml_tensor * s,
  617. int32_t state_size,
  618. int32_t n_seqs,
  619. const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
  620. ggml_tensor * build_rwkv_token_shift_load(
  621. llm_graph_input_rs * inp,
  622. const llama_ubatch & ubatch,
  623. int il) const;
  624. ggml_tensor * build_rwkv_token_shift_store(
  625. ggml_tensor * token_shift,
  626. const llama_ubatch & ubatch,
  627. int il) const;
  628. //
  629. // hybrid
  630. //
  631. llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
  632. //
  633. // pooling
  634. //
  635. void build_pooling(
  636. ggml_tensor * cls,
  637. ggml_tensor * cls_b,
  638. ggml_tensor * cls_out,
  639. ggml_tensor * cls_out_b) const;
  640. //
  641. // dense (out)
  642. //
  643. void build_dense_out(
  644. ggml_tensor * dense_2,
  645. ggml_tensor * dense_3) const;
  646. };
  647. // TODO: better name
  648. int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional);