فهرست منبع

cuda : fix vmm pool with multi GPU (#4620)

* cuda : fix vmm pool with multi GPU

* hip

* use recommended granularity instead of minimum

* better error checking

* fix mixtral

* use cudaMemcpy3DPeerAsync

* use cuda_pool_alloc in ggml_cuda_op_mul_mat

* consolidate error checking in ggml_cuda_set_device

* remove unnecessary inlines

ggml-ci

* style fixes

* only use vmm for the main device

* fix scratch buffer size, re-enable vmm pool for all devices

* remove unnecessary check id != g_main_device
slaren 2 سال پیش
والد
کامیت
dc68f0054c
3فایلهای تغییر یافته به همراه191 افزوده شده و 188 حذف شده
  1. 189 184
      ggml-cuda.cu
  2. 0 3
      ggml.c
  3. 2 1
      llama.cpp

تفاوت فایلی نمایش داده نمی شود زیرا این فایل بسیار بزرگ است
+ 189 - 184
ggml-cuda.cu


+ 0 - 3
ggml.c

@@ -4041,7 +4041,6 @@ static struct ggml_tensor * ggml_group_norm_impl(
     result->op = GGML_OP_GROUP_NORM;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL; // TODO: maybe store epsilon here?
 
     return result;
 }
@@ -5541,7 +5540,6 @@ static struct ggml_tensor * ggml_upscale_impl(
     result->op_params[0] = scale_factor;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL;
 
     return result;
 }
@@ -5846,7 +5844,6 @@ struct ggml_tensor * ggml_get_rel_pos(
     result->op   = GGML_OP_GET_REL_POS;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL;
 
     return result;
 }

+ 2 - 1
llama.cpp

@@ -9519,7 +9519,8 @@ struct llama_context * llama_new_context_with_model(
             ctx->alloc = ggml_allocr_new_from_buffer(ctx->buf_alloc);
 #if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST)
             if (model->n_gpu_layers > 0) {
-                ggml_cuda_set_scratch_size(alloc_size);
+                // the CPU buffer adds this padding in case the malloc buffer is not aligned, so we need to do the same for the GPU buffer, since we use the same offsets
+                ggml_cuda_set_scratch_size(alloc_size + 64);
                 LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
 
                 // calculate total VRAM usage

برخی فایل ها در این مقایسه diff نمایش داده نمی شوند زیرا تعداد فایل ها بسیار زیاد است