瀏覽代碼

cuda : fix vmm pool with multi GPU (#4620)

* cuda : fix vmm pool with multi GPU

* hip

* use recommended granularity instead of minimum

* better error checking

* fix mixtral

* use cudaMemcpy3DPeerAsync

* use cuda_pool_alloc in ggml_cuda_op_mul_mat

* consolidate error checking in ggml_cuda_set_device

* remove unnecessary inlines

ggml-ci

* style fixes

* only use vmm for the main device

* fix scratch buffer size, re-enable vmm pool for all devices

* remove unnecessary check id != g_main_device
slaren 2 年之前
父節點
當前提交
dc68f0054c
共有 3 個文件被更改,包括 191 次插入188 次删除
  1. 189 184
      ggml-cuda.cu
  2. 0 3
      ggml.c
  3. 2 1
      llama.cpp

文件差異過大導致無法顯示
+ 189 - 184
ggml-cuda.cu


+ 0 - 3
ggml.c

@@ -4041,7 +4041,6 @@ static struct ggml_tensor * ggml_group_norm_impl(
     result->op = GGML_OP_GROUP_NORM;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL; // TODO: maybe store epsilon here?
 
     return result;
 }
@@ -5541,7 +5540,6 @@ static struct ggml_tensor * ggml_upscale_impl(
     result->op_params[0] = scale_factor;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL;
 
     return result;
 }
@@ -5846,7 +5844,6 @@ struct ggml_tensor * ggml_get_rel_pos(
     result->op   = GGML_OP_GET_REL_POS;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL;
 
     return result;
 }

+ 2 - 1
llama.cpp

@@ -9519,7 +9519,8 @@ struct llama_context * llama_new_context_with_model(
             ctx->alloc = ggml_allocr_new_from_buffer(ctx->buf_alloc);
 #if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST)
             if (model->n_gpu_layers > 0) {
-                ggml_cuda_set_scratch_size(alloc_size);
+                // the CPU buffer adds this padding in case the malloc buffer is not aligned, so we need to do the same for the GPU buffer, since we use the same offsets
+                ggml_cuda_set_scratch_size(alloc_size + 64);
                 LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
 
                 // calculate total VRAM usage

部分文件因文件數量過多而無法顯示