Pārlūkot izejas kodu

cuda : fix vmm pool with multi GPU (#4620)

* cuda : fix vmm pool with multi GPU

* hip

* use recommended granularity instead of minimum

* better error checking

* fix mixtral

* use cudaMemcpy3DPeerAsync

* use cuda_pool_alloc in ggml_cuda_op_mul_mat

* consolidate error checking in ggml_cuda_set_device

* remove unnecessary inlines

ggml-ci

* style fixes

* only use vmm for the main device

* fix scratch buffer size, re-enable vmm pool for all devices

* remove unnecessary check id != g_main_device
slaren 2 gadi atpakaļ
vecāks
revīzija
dc68f0054c
3 mainītis faili ar 191 papildinājumiem un 188 dzēšanām
  1. 189 184
      ggml-cuda.cu
  2. 0 3
      ggml.c
  3. 2 1
      llama.cpp

Failā izmaiņas netiks attēlotas, jo tās ir par lielu
+ 189 - 184
ggml-cuda.cu


+ 0 - 3
ggml.c

@@ -4041,7 +4041,6 @@ static struct ggml_tensor * ggml_group_norm_impl(
     result->op = GGML_OP_GROUP_NORM;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL; // TODO: maybe store epsilon here?
 
     return result;
 }
@@ -5541,7 +5540,6 @@ static struct ggml_tensor * ggml_upscale_impl(
     result->op_params[0] = scale_factor;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL;
 
     return result;
 }
@@ -5846,7 +5844,6 @@ struct ggml_tensor * ggml_get_rel_pos(
     result->op   = GGML_OP_GET_REL_POS;
     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
     result->src[0] = a;
-    result->src[1] = NULL;
 
     return result;
 }

+ 2 - 1
llama.cpp

@@ -9519,7 +9519,8 @@ struct llama_context * llama_new_context_with_model(
             ctx->alloc = ggml_allocr_new_from_buffer(ctx->buf_alloc);
 #if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST)
             if (model->n_gpu_layers > 0) {
-                ggml_cuda_set_scratch_size(alloc_size);
+                // the CPU buffer adds this padding in case the malloc buffer is not aligned, so we need to do the same for the GPU buffer, since we use the same offsets
+                ggml_cuda_set_scratch_size(alloc_size + 64);
                 LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
 
                 // calculate total VRAM usage

Daži faili netika attēloti, jo izmaiņu fails ir pārāk liels