|
|
@@ -2486,6 +2486,7 @@ struct llama_cparams {
|
|
|
bool causal_attn;
|
|
|
bool offload_kqv;
|
|
|
bool flash_attn;
|
|
|
+ bool no_perf;
|
|
|
|
|
|
enum llama_pooling_type pooling_type;
|
|
|
|
|
|
@@ -6661,8 +6662,6 @@ static bool llm_load_tensors(
|
|
|
bool use_mlock,
|
|
|
llama_progress_callback progress_callback,
|
|
|
void * progress_callback_user_data) {
|
|
|
- model.t_start_us = ggml_time_us();
|
|
|
-
|
|
|
auto & hparams = model.hparams;
|
|
|
|
|
|
model.split_mode = split_mode;
|
|
|
@@ -8593,14 +8592,13 @@ static bool llm_load_tensors(
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- // loading time will be recalculate after the first eval, so
|
|
|
- // we take page faults deferred by mmap() into consideration
|
|
|
- model.t_load_us = ggml_time_us() - model.t_start_us;
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
|
|
|
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
|
|
|
+ model.t_start_us = ggml_time_us();
|
|
|
+
|
|
|
try {
|
|
|
llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
|
|
|
|
|
|
@@ -8662,6 +8660,10 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
|
|
return -1;
|
|
|
}
|
|
|
|
|
|
+ // loading time will be recalculate after the first eval, so
|
|
|
+ // we take page faults deferred by mmap() into consideration
|
|
|
+ model.t_load_us = ggml_time_us() - model.t_start_us;
|
|
|
+
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
@@ -17949,6 +17951,7 @@ struct llama_context_params llama_context_default_params() {
|
|
|
/*.embeddings =*/ false,
|
|
|
/*.offload_kqv =*/ true,
|
|
|
/*.flash_attn =*/ false,
|
|
|
+ /*.no_perf =*/ true,
|
|
|
/*.abort_callback =*/ nullptr,
|
|
|
/*.abort_callback_data =*/ nullptr,
|
|
|
};
|
|
|
@@ -18159,6 +18162,7 @@ struct llama_context * llama_new_context_with_model(
|
|
|
cparams.embeddings = params.embeddings;
|
|
|
cparams.offload_kqv = params.offload_kqv;
|
|
|
cparams.flash_attn = params.flash_attn;
|
|
|
+ cparams.no_perf = params.no_perf;
|
|
|
cparams.pooling_type = params.pooling_type;
|
|
|
|
|
|
cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
|
|
|
@@ -20077,10 +20081,14 @@ void llama_synchronize(struct llama_context * ctx) {
|
|
|
|
|
|
// add the evaluation to the stats
|
|
|
if (ctx->n_queued_tokens == 1) {
|
|
|
- ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
|
|
|
+ if (!ctx->cparams.no_perf) {
|
|
|
+ ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
|
|
|
+ }
|
|
|
ctx->n_eval++;
|
|
|
} else if (ctx->n_queued_tokens > 1) {
|
|
|
- ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
|
|
|
+ if (!ctx->cparams.no_perf) {
|
|
|
+ ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
|
|
|
+ }
|
|
|
ctx->n_p_eval += ctx->n_queued_tokens;
|
|
|
}
|
|
|
|
|
|
@@ -20688,65 +20696,40 @@ const char * llama_print_system_info(void) {
|
|
|
return s.c_str();
|
|
|
}
|
|
|
|
|
|
-void llama_perf_print(const void * ctx, enum llama_perf_type type) {
|
|
|
- switch (type) {
|
|
|
- case LLAMA_PERF_TYPE_CONTEXT:
|
|
|
- {
|
|
|
- const auto * p = (const struct llama_context *) ctx;
|
|
|
-
|
|
|
- const double t_start_ms = 1e-3 * p->t_start_us;
|
|
|
- const double t_end_ms = 1.00 * ggml_time_ms();
|
|
|
- const double t_load_ms = 1e-3 * p->t_load_us;
|
|
|
- const double t_p_eval_ms = 1e-3 * p->t_p_eval_us;
|
|
|
- const double t_eval_ms = 1e-3 * p->t_eval_us;
|
|
|
-
|
|
|
- const int32_t n_p_eval = std::max(0, p->n_p_eval);
|
|
|
- const int32_t n_eval = std::max(1, p->n_eval);
|
|
|
-
|
|
|
- LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, t_load_ms);
|
|
|
- LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
|
- __func__, t_p_eval_ms, n_p_eval, t_p_eval_ms / n_p_eval, 1e3 / t_p_eval_ms * n_p_eval);
|
|
|
- LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
|
- __func__, t_eval_ms, n_eval, t_eval_ms / n_eval, 1e3 / t_eval_ms * n_eval);
|
|
|
- LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - t_start_ms), (n_p_eval + n_eval));
|
|
|
- } break;
|
|
|
- case LLAMA_PERF_TYPE_SAMPLER_CHAIN:
|
|
|
- {
|
|
|
- const auto * smpl = (const struct llama_sampler *) ctx;
|
|
|
- const auto * p = (const struct llama_sampler_chain *) smpl->ctx;
|
|
|
+struct llama_perf_context_data llama_perf_context(const struct llama_context * ctx) {
|
|
|
+ struct llama_perf_context_data data = {};
|
|
|
|
|
|
- const double t_sampler_ms = 1e-3 * p->t_sample_us;
|
|
|
+ if (ctx == nullptr) {
|
|
|
+ return data;
|
|
|
+ }
|
|
|
|
|
|
- const int32_t n_sampler = std::max(0, p->n_sample);
|
|
|
+ data.t_start_ms = 1e-3 * ctx->t_start_us;
|
|
|
+ data.t_load_ms = 1e-3 * ctx->t_load_us;
|
|
|
+ data.t_p_eval_ms = 1e-3 * ctx->t_p_eval_us;
|
|
|
+ data.t_eval_ms = 1e-3 * ctx->t_eval_us;
|
|
|
+ data.n_p_eval = std::max(1, ctx->n_p_eval);
|
|
|
+ data.n_eval = std::max(1, ctx->n_eval);
|
|
|
|
|
|
- LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
|
- __func__, t_sampler_ms, n_sampler, t_sampler_ms / n_sampler, 1e3 / t_sampler_ms * n_sampler);
|
|
|
- } break;
|
|
|
- default:
|
|
|
- GGML_ABORT("invalid perf type");
|
|
|
- }
|
|
|
+ return data;
|
|
|
}
|
|
|
|
|
|
-void llama_perf_reset(void * ctx, enum llama_perf_type type) {
|
|
|
- switch (type) {
|
|
|
- case LLAMA_PERF_TYPE_CONTEXT:
|
|
|
- {
|
|
|
- auto * p = (struct llama_context *) ctx;
|
|
|
+void llama_perf_context_print(const struct llama_context * ctx) {
|
|
|
+ const auto data = llama_perf_context(ctx);
|
|
|
|
|
|
- p->t_start_us = ggml_time_us();
|
|
|
- p->t_eval_us = p->n_eval = 0;
|
|
|
- p->t_p_eval_us = p->n_p_eval = 0;
|
|
|
- } break;
|
|
|
- case LLAMA_PERF_TYPE_SAMPLER_CHAIN:
|
|
|
- {
|
|
|
- auto * smpl = (struct llama_sampler *) ctx;
|
|
|
- auto * p = (struct llama_sampler_chain *) smpl->ctx;
|
|
|
+ const double t_end_ms = 1e-3 * ggml_time_us();
|
|
|
|
|
|
- p->t_sample_us = p->n_sample = 0;
|
|
|
- } break;
|
|
|
- default:
|
|
|
- GGML_ABORT("invalid perf type");
|
|
|
- }
|
|
|
+ LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
|
|
|
+ LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
|
+ __func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
|
|
|
+ LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
|
+ __func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
|
|
|
+ LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
|
|
|
+}
|
|
|
+
|
|
|
+void llama_perf_context_reset(struct llama_context * ctx) {
|
|
|
+ ctx->t_start_us = ggml_time_us();
|
|
|
+ ctx->t_eval_us = ctx->n_eval = 0;
|
|
|
+ ctx->t_p_eval_us = ctx->n_p_eval = 0;
|
|
|
}
|
|
|
|
|
|
void llama_perf_dump_yaml(FILE * stream, const llama_context * ctx) {
|